scispace - formally typeset
Open AccessJournal Article

Sideband cooling micromechanical motion to the quantum ground state

Reads0
Chats0
TLDR
In this article, a microwave cavity optomechanical system was realized by coupling the motion of an aluminum membrane to the resonance frequency of a superconducting circuit, and damping and cooling the membrane motion with radiation pressure forces.
Abstract
Accessing the full quantum nature of a macroscopic mechanical oscillator first requires elimination of its classical, thermal motion. The flourishing field of cavity optomechanics provides a nearly ideal architecture for both preparation and detection of mechanical motion at the quantum level. We realize a microwave cavity optomechanical system by coupling the motion of an aluminum membrane to the resonance frequency of a superconducting circuit [1]. By exciting the microwave circuit below its resonance frequency, we damp and cool the membrane motion with radiation pressure forces, analogous to laser cooling of the motion of trapped ions. The microwave excitation serves not only to cool, but also to monitor the displacement of the membrane. A nearly shot-noise limited, Josephson parametric amplifier is used to detect the mechanical sidebands of this microwave excitation and quantify the thermal motion as it is cooled with radiation pressure forces to its quantum ground state [2].

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Microwave amplification with nanomechanical resonators

TL;DR: The concept of the amplification of microwave signals using mechanical oscillation, which seems likely to enable quantum-limited operation, is introduced and it is anticipated that near-quantum-limited mechanical microwave amplification will soon be feasible in various applications involving integrated electrical circuits.
Journal ArticleDOI

Hybrid quantum systems with circuit quantum electrodynamics

TL;DR: A review of recent research on the creation of hybrid quantum systems based on circuit quantum electrodynamics, encompassing mechanical oscillators, quantum acoustodynamics with surface acoustic waves, quantum magnonics and coupling between superconducting circuits and ensembles or single spins can be found in this paper.
Journal ArticleDOI

Macroscopic quantum mechanics: theory and experimental concepts of optomechanics

TL;DR: In this article, the authors review a set of techniques of quantum measurement theory that are often used to analyse quantum optomechanical systems, including quantum entanglement, quantum teleportation and quantum Zeno effect.
Journal ArticleDOI

Quantum superposition of massive objects and collapse models

TL;DR: In this article, the requirements to test some of the most paradigmatic collapse models with a protocol that prepares quantum superpositions of massive objects are analyzed in a general framework and taking into account only unavoidable sources of decoherence: blackbody radiation and scattering of environmental particles.
Journal Article

Using interference for high fidelity quantum state transfer in optomechanics

TL;DR: It is shown that this system possesses an effective mechanically dark mode which is immune to mechanical dissipation; utilizing this feature allows highly efficient transfer of intracavity states, as well as of itinerant photon states.
References
More filters
Journal ArticleDOI

Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor

TL;DR: A Bose-Einstein condensate was produced in a vapor of rubidium-87 atoms that was confined by magnetic fields and evaporatively cooled and exhibited a nonthermal, anisotropic velocity distribution expected of the minimum-energy quantum state of the magnetic trap in contrast to the isotropic, thermal velocity distribution observed in the broad uncondensed fraction.
Journal ArticleDOI

Quantum ground state and single-phonon control of a mechanical resonator

TL;DR: This work shows that conventional cryogenic refrigeration can be used to cool a mechanical mode to its quantum ground state by using a microwave-frequency mechanical oscillator—a ‘quantum drum’—coupled to a quantum bit, which is used to measure the quantum state of the resonator.
Journal ArticleDOI

Cavity Optomechanics: Back-Action at the Mesoscale

TL;DR: Recent experiments have reached a regime where the back-action of photons caused by radiation pressure can influence the optomechanical dynamics, giving rise to a host of long-anticipated phenomena.
Journal ArticleDOI

Introduction to quantum noise, measurement, and amplification

TL;DR: In this paper, a pedagogical introduction to the physics of quantum noise and its connections to quantum measurement and quantum amplification is given, and the basics of weak continuous measurements are described.
Journal ArticleDOI

Optomechanically Induced Transparency

TL;DR: Electromagnetically induced transparency in an optomechanical system whereby the coupling of a cavity to a light pulse is used to control the transmission of light through the cavity may help to allow the engineering of light storage and routing on an optical chip.
Related Papers (5)