scispace - formally typeset
Open AccessJournal ArticleDOI

Solar Cell Efficiency Tables (Version 45)

TLDR
Green et al. as mentioned in this paper presented consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules, and guidelines for inclusion of results into these tables are outlined and new entries since July 2014 are reviewed.
Abstract
Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined and new entries since July 2014 are reviewed. URI: http://onlinelibrary.wiley.com/doi/10.1002/pip.2573/pdf [1] Authors: GREEN Martin A. EMERY Keith HISHIKAWA Y. WARTA W. DUNLOP Ewan Publication Year: 2015 Type: Articles in Journals

read more

Citations
More filters
Journal ArticleDOI

Metal-halide perovskites for photovoltaic and light-emitting devices

TL;DR: The broad tunability and fabrication methods of these materials, the current understanding of the operation of state-of-the-art solar cells and the properties that have delivered light-emitting diodes and lasers are described.
Journal ArticleDOI

Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors

TL;DR: In this paper, a layered sandwich-type architecture is proposed for next-generation dye-sensitized solar cells, which consists of a bicontinuous three-dimensional nanocomposite of mesoporous (mp)-TiO2,w ith CH 3NH3PbII3 perovskite as light harvester, as well as a polymeric hole conductor.
Journal ArticleDOI

Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers

TL;DR: Heavy doped inorganic charge extraction layers in planar PSCs were used to achieve very rapid carrier extraction, even with 10- to 20-nanometer-thick layers, avoiding pinholes and eliminating local structural defects over large areas.
Journal ArticleDOI

Photovoltaic materials: Present efficiencies and future challenges

TL;DR: A comprehensively and systematically review the leading candidate materials, present the limitations of each system, and analyze how these limitations can be overcome and overall cell performance improved.
Journal ArticleDOI

Research opportunities to advance solar energy utilization

TL;DR: Lewis reviews the status of solar thermal and solar fuels approaches for harnessing solar energy, as well as technology gaps for achieving cost-effective scalable deployment combined with storage technologies to provide reliable, dispatchable energy.
References
More filters
Journal ArticleDOI

Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells

TL;DR: This paper demonstrates highly efficient solar cells exhibiting 12.3% in a power conversion efficiency of under standard AM 1.5, for the most efficient device, as a result of tunable composition for the light harvester in conjunction with a mesoporous TiO2 film and a hole conducting polymer.
Journal ArticleDOI

19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells

TL;DR: In this paper, a hexagonally symmetric honeycomb surface texture was used to reduce reflection loss in multicrystalline silicon solar cells and increase the cell's effective optical thickness.
Journal ArticleDOI

Solar cell efficiency tables (version 44)

TL;DR: In this paper, the authors present a list of the highest independently confirmed efficiencies for solar cells and modules and provide guidelines for inclusion of results into these tables and new entries since January 2010 are reviewed.
Related Papers (5)