scispace - formally typeset
Open AccessJournal ArticleDOI

SweeD: Likelihood-Based Detection of Selective Sweeps in Thousands of Genomes

Reads0
Chats0
TLDR
It is shown that an increase of sample size results in more precise detection of positive selection and the ability to analyze substantially larger sample sizes by using SweeD leads to more accurate sweep detection.
Abstract
The advent of modern DNA sequencing technology is the driving force in obtaining complete intra-specific genomes that can be used to detect loci that have been subject to positive selection in the recent past. Based on selective sweep theory, beneficial loci can be detected by examining the single nucleotide polymorphism patterns in intraspecific genome alignments. In the last decade, a plethora of algorithms for identifying selective sweeps have been developed. However, the majority of these algorithms have not been designed for analyzing whole-genome data. We present SweeD (Sweep Detector), an open-source tool for the rapid detection of selective sweeps in whole genomes. It analyzes site frequency spectra and represents a substantial extension of the widely used SweepFinder program. The sequential version of SweeD is up to 22 times faster than SweepFinder and, more importantly, is able to analyze thousands of sequences. We also provide a parallel implementation of SweeD for multi-core processors. Furthermore, we implemented a checkpointing mechanism that allows to deploy SweeD on cluster systems with queue execution time restrictions, as well as to resume long-running analyses after processor failures. In addition, the user can specify various demographic models via the command-line to calculate their theoretically expected site frequency spectra. Therefore, (in contrast to SweepFinder) the neutral site frequencies can optionally be directly calculated from a given demographic model. We show that an increase of sample size results in more precise detection of positive selection. Thus, the ability to analyze substantially larger sample sizes by using SweeD leads to more accurate sweep detection. We validate SweeD via simulations and by scanning the first chromosome from the 1000 human Genomes project for selective sweeps. We compare SweeD results with results from a linkage-disequilibrium-based approach and identify common outliers.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Evaluating the performance of selection scans to detect selective sweeps in domestic dogs

TL;DR: It is found that artificial selection during dog domestication has left characteristic signatures in the haplotype and nucleotide polymorphism patterns around selected loci that can be detected in the genotype data from a single population sample.
Journal ArticleDOI

The impact of equilibrium assumptions on tests of selection

TL;DR: It is demonstrated that the LD-based OmegaPlus performs best in terms of power to reject the neutral model under both equilibrium and non-equilibrium conditions—an important result regarding the relative effectiveness of linkage disequilibrium relative to site frequency spectrum based statics.
Journal ArticleDOI

Adaptive diversification of growth allometry in the plant Arabidopsis thaliana

TL;DR: Adaptation to climate in Arabidopsis thaliana is associated with local strains that substantially deviate from the values predicted by MST, suggesting that variation in allometry contributes to local adaptation to contrasting environments and helps reconcile past debates on the origin of allometric scaling in biology.
Journal ArticleDOI

Widespread selective sweeps throughout the genome of model plant pathogenic fungi and identification of effector candidates

TL;DR: The results suggest that positive selection can have a pervasive impact in shaping genomic variability in pathogens and selfing species, broadening the knowledge of the occurrence and frequency of selective events in natural populations.
Journal ArticleDOI

Worldwide Population Structure, Long-Term Demography, and Local Adaptation of Helicobacter pylori

TL;DR: The results indicate a more ancient origin for the association of humans and H. pylori than previously thought and identify several important perspectives for future clinical research on candidate selected regions that include both previously characterized genes and hitherto unknown functional genes.
References
More filters
Journal ArticleDOI

An integrated map of genetic variation from 1,092 human genomes

TL;DR: It is shown that evolutionary conservation and coding consequence are key determinants of the strength of purifying selection, that rare-variant load varies substantially across biological pathways, and that each individual contains hundreds of rare non-coding variants at conserved sites, such as motif-disrupting changes in transcription-factor-binding sites.
Book

Practical Methods of Optimization

TL;DR: The aim of this book is to provide a Discussion of Constrained Optimization and its Applications to Linear Programming and Other Optimization Problems.
Journal ArticleDOI

The hitch-hiking effect of a favourable gene.

TL;DR: If the selective coefficients at the linked locus are small compared to those at the substituted locus, it is shown that the probability of complete fixation at the links is approximately exp (− Nc), where c is the recombinant fraction and N the population size.
Journal ArticleDOI

Generating samples under a Wright-Fisher neutral model of genetic variation.

TL;DR: A Monte Carlo computer program is available to generate samples drawn from a population evolving according to a Wright-Fisher neutral model, and the samples produced can be used to investigate the sampling properties of any sample statistic under these neutral models.
Related Papers (5)