scispace - formally typeset
Journal ArticleDOI

The Development and Future of Lithium Ion Batteries

George E. Blomgren
- 01 Jan 2017 - 
- Vol. 164, Iss: 1
Reads0
Chats0
TLDR
This year, the battery industry celebrated the 25th anniversary of the introduction of the lithium ion rechargeable battery by Sony as discussed by the authors, which used a combination of lower temperature carbons for the negative electrode to prevent solvent degradation and lithium cobalt dioxide modified somewhat from Goodenough's earlier work.
Abstract
This year, the battery industry celebrates the 25th anniversary of the introduction of the lithium ion rechargeable battery by Sony Corporation. The discovery of the system dates back to earlier work by Asahi Kasei in Japan, which used a combination of lower temperature carbons for the negative electrode to prevent solvent degradation and lithium cobalt dioxide modified somewhat from Goodenough’s earlier work. The development by Sony was carried out within a few years by bringing together technology in film coating from their magnetic tape division and electrochemical technology from their battery division. The past 25 years has shown rapid growth in the sales and in the benefits of lithium ion in comparison to all the earlier rechargeable battery systems. Recent work on new materials shows that there is a good likelihood that the lithium ion battery will continue to improve in cost, energy, safety and power capability and will be a formidable competitor for some years to come. © The Author(s) 2016. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/2.0251701jes] All rights reserved.

read more

Citations
More filters
Journal ArticleDOI

An All‐Fluorinated Electrolyte Toward High Voltage and Long Cycle Performance Dual‐Ion Batteries

TL;DR: In this paper , an all-fluorinated electrolyte was proposed to enable a highly stable operation of the graphite-Li DIB up to 5.2 V by forming robust and less resistive passivation films on both electrodes to reduce side reactions.
Journal ArticleDOI

Characterization and Laser Structuring of Aqueous Processed Li(Ni0.6Mn0.2Co0.2)O2 Thick-Film Cathodes for Lithium-Ion Batteries.

TL;DR: In this article, aqueous processing of thick-film NMC 622 cathodes was studied using carboxymethyl cellulose and fluorine acrylic hybrid latex as binders.
Journal ArticleDOI

Multi-functional yolk-shell structured materials and their applications for high-performance lithium ion battery and lithium sulfur battery

TL;DR: In this article , a review of the yolk-shell-structured materials used in the cells including their preparation methods, geometric morphology design, action mechanisms in enhancing electrochemical performances and safety are generalized.
Journal ArticleDOI

Poly(arylene ether nitrile) porous membranes with adjustable pore size for high temperature resistance and high-performance lithium-ion batteries

TL;DR: In this article, flame-retardant poly(arylene ether nitriles) (PEN) porous membranes are prepared by nonsolvent induced phase separation method, which provides a facile and effective approach for preparing the promising separators with adjustable pore size, high temperature resistance and high performance for lithium-ion batteries.
References
More filters
Journal ArticleDOI

Lithium Batteries and Cathode Materials

TL;DR: This paper will describe lithium batteries in more detail, building an overall foundation for the papers that follow which describe specific components in some depth and usually with an emphasis on the materials behavior.
Journal ArticleDOI

LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density

TL;DR: In this paper, a new system LixCoO2 (0 Li x CoO 2 Li ) is proposed, which shows low overvoltages and good reversibility for current densities up to 4 mA cm−2 over a large range of x.
Journal ArticleDOI

A review on the separators of liquid electrolyte Li-ion batteries

TL;DR: In this paper, the separators used in liquid electrolyte Li-ion batteries are classified into three groups: microporous polymer membranes, non-woven fabric mats and inorganic composite membranes.
Journal ArticleDOI

Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells

TL;DR: In this paper, Li/graphite and Li/petroleum coke cells using a in a 50:50 mixture of propylene carbonate (PC) and ethylene carbonates (EC) electrolyte exhibit irreversible reactions only on the first discharge.
Journal ArticleDOI

The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials

TL;DR: It is demonstrated how very specific local Li-excess environments around oxygen atoms necessarily lead to labile oxygen electrons that can be more easily extracted and participate in the practical capacity of cathodes.
Related Papers (5)