scispace - formally typeset
Open AccessJournal ArticleDOI

The role of mergers and halo spin in shaping galaxy morphology

TLDR
In this paper, the authors consider 18,000 central galaxies with stellar masses from the Illustris cosmological hydrodynamic simulation and find that the fraction of accreted stars increases with galaxy stellar mass, from less than 5% in dwarfs to 80% in the most massive objects.
Abstract
Mergers and the spin of the dark matter halo are factors traditionally believed to determine the morphology of galaxies within a $\Lambda$CDM cosmology. We study this hypothesis by considering approximately 18,000 central galaxies at $z=0$ with stellar masses $M_{\ast} = 10^{9}-10^{12} \, {\rm M}_{\odot}$ selected from the Illustris cosmological hydrodynamic simulation. The fraction of accreted stars -- which measures the importance of massive, recent and dry mergers -- increases steeply with galaxy stellar mass, from less than 5 per cent in dwarfs to 80 per cent in the most massive objects, and the impact of mergers on galaxy morphology increases accordingly. For galaxies with $M_{\ast} \gtrsim 10^{11} \, {\rm M}_{\odot}$, mergers have the expected effect: if gas-poor they promote the formation of spheroidal galaxies, whereas gas-rich mergers favour the formation and survivability of massive discs. This trend, however, breaks at lower masses. For objects with $M_{\ast} \lesssim 10^{11} \, {\rm M}_{\odot}$, mergers do not seem to play any significant role in determining the morphology, with accreted stellar fractions and mean merger gas fractions that are indistinguishable between spheroidal and disc-dominated galaxies. On the other hand, halo spin correlates with morphology primarily in the least massive objects in the sample ($M_{\ast} \lesssim 10^{10} \, {\rm M}_{\odot}$), but only weakly for galaxies above that mass. Our results support a scenario where (1) mergers play a dominant role in shaping the morphology of massive galaxies, (2) halo spin is important for the morphology of dwarfs, and (3) the morphology of medium-sized galaxies -- including the Milky Way -- shows little dependence on galaxy assembly history or halo spin, at least when these two factors are considered individually.

read more

Citations
More filters
Journal ArticleDOI

First results from the IllustrisTNG simulations: the galaxy colour bimodality

TL;DR: The first two simulations of the IllustrisTNG project were presented in this article, focusing on the optical colors of galaxies at low redshift, and the results showed that the simulated (g-r) colors of 10^9 10^11 Msun which redden at z < 1 accumulate on average ~25% of their final z=0 mass post-reddening; at the same time, ~18% of such massive galaxies acquire half or more of their last stellar mass while on the red sequence.
Journal ArticleDOI

First results from the TNG50 simulation: the evolution of stellar and gaseous discs across cosmic time

TL;DR: In this paper, the authors present a new cosmological, magnetohydrodynamical simulation for galaxy formation, TNG50, which reaches a numerical resolution typical of zoom-in simulations, with a baryonic element mass of 8.5 x 10(4) M-circle dot and an average cell size of 70-140pc in the star-forming regions of galaxies.
Posted Content

The IllustrisTNG Simulations: Public Data Release

TL;DR: Improvements and new functionality in the web-based API are described, including on-demand visualization and analysis of galaxies and halos, exploratory plotting of scaling relations and other relationships between galactic and halo properties, and a new JupyterLab interface that provides an online, browser-based, near-native data analysis platform enabling user computation with local access to TNG data, alleviating the need to download large datasets.
References
More filters
Journal ArticleDOI

Stellar population synthesis at the resolution of 2003

TL;DR: In this article, the spectral evolution of stellar populations at ages between 100,000 yr and 20 Gyr at a resolution of 3 A across the whole wavelength range from 3200 to 9500 A for a wide range of metallicities.
Journal ArticleDOI

The Sloan Digital Sky Survey: Technical Summary

Donald G. York
- 27 Jun 2000 - 
TL;DR: The Sloan Digital Sky Survey (SDSS) as mentioned in this paper provides the data to support detailed investigations of the distribution of luminous and non-luminous matter in the Universe: a photometrically and astrometrically calibrated digital imaging survey of pi steradians above about Galactic latitude 30 degrees in five broad optical bands.
Journal ArticleDOI

The Sloan Digital Sky Survey: Technical summary

Donald G. York, +151 more
TL;DR: The Sloan Digital Sky Survey (SDSS) as discussed by the authors provides the data to support detailed investigations of the distribution of luminous and non-luminous matter in the universe: a photometrically and astrometrically calibrated digital imaging survey of π sr above about Galactic latitude 30° in five broad optical bands to a depth of g' ~ 23 mag.

Astronomical Data Analysis Software and Systems

TL;DR: The ADS abstract service at: http://adswww.harvard.edu has been updated considerably in the last year and new capabilities in the search engine include searching for multi-word phrases and searching for various logical combinations of search terms.
Related Papers (5)