scispace - formally typeset
Journal ArticleDOI

The Uncultured Microbial Majority

Reads0
Chats0
TLDR
Genome sequence information that would allow ribosomal RNA gene trees to be related to broader patterns in microbial genome evolution is scant, and therefore microbial diversity remains largely unexplored territory.
Abstract
▪ Abstract Since the delineation of 12 bacterial phyla by comparative phylogenetic analyses of 16S ribosomal RNA in 1987 knowledge of microbial diversity has expanded dramatically owing to the sequencing of ribosomal RNA genes cloned from environmental DNA. Currently, only 26 of the approximately 52 identifiable major lineages, or phyla, within the domain Bacteria have cultivated representatives. Evidence from field studies indicates that many of the uncultivated phyla are found in diverse habitats, and some are extraordinarily abundant. In some important environments, including seawater, freshwater, and soil, many biologically and geochemically important organisms are at best only remotely related to any strain that has been characterized by phenotype or by genome sequencing. Genome sequence information that would allow ribosomal RNA gene trees to be related to broader patterns in microbial genome evolution is scant, and therefore microbial diversity remains largely unexplored territory.

read more

Citations
More filters
Journal ArticleDOI

UniFrac: a New Phylogenetic Method for Comparing Microbial Communities

TL;DR: The results illustrate that UniFrac provides a new way of characterizing microbial communities, using the wealth of environmental rRNA sequences, and allows quantitative insight into the factors that underlie the distribution of lineages among environments.
Journal ArticleDOI

Marine natural products.

TL;DR: This review covers the literature published in 2014 for marine natural products, with 1116 citations referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms.
Journal ArticleDOI

Microbial diversity in the deep sea and the underexplored “rare biosphere”

TL;DR: It is shown that bacterial communities of deep water masses of the North Atlantic and diffuse flow hydrothermal vents are one to two orders of magnitude more complex than previously reported for any microbial environment.
Journal ArticleDOI

Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons

TL;DR: A new chimera detection tool called Chimera Slayer (CS), which detects chimeras with greater sensitivity than previous methods, performs well on short sequences such as those produced by the 454 Life Sciences (Roche) Genome Sequencer, and can scale to large data sets.
Journal ArticleDOI

Ecological and evolutionary forces shaping microbial diversity in the human intestine.

TL;DR: The human gut is populated with as many as 100 trillion cells, whose collective genome, the microbiome, is a reflection of evolutionary selection pressures acting at the level of the host and at thelevel of the microbial cell.
References
More filters

16S/23S rRNA sequencing

D. J. Lane
Journal ArticleDOI

Phylogenetic identification and in situ detection of individual microbial cells without cultivation.

TL;DR: Phylogenetic analysis of the retrieved rRNA sequence of an uncultured microorganism reveals its closest culturable relatives and may, together with information on the physicochemical conditions of its natural habitat, facilitate more directed cultivation attempts.
Journal ArticleDOI

Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya.

TL;DR: It is proposed that a formal system of organisms be established in which above the level of kingdom there exists a new taxon called a "domain." Life on this planet would be seen as comprising three domains, the Bacteria, the Archaea, and the Eucarya, each containing two or more kingdoms.
Journal ArticleDOI

Prokaryotes: The unseen majority

TL;DR: The number of prokaryotes and the total amount of their cellular carbon on earth are estimated to be 4-6 x 10(30) cells and 350-550 Pg of C (1 Pg = 10(15) g), respectively, which is 60-100% of the estimated total carbon in plants.
Related Papers (5)