scispace - formally typeset
Journal ArticleDOI

Theory of ballistic nanotransistors

TLDR
In this paper, numerical simulations are used to guide the development of a simple analytical theory for ballistic field-effect transistors, and the model reduces to Natori's theory of the ballistic MOSFET.
Abstract
Numerical simulations are used to guide the development of a simple analytical theory for ballistic field-effect transistors. When two-dimensional (2-D) electrostatic effects are small (and when the insulator capacitance is much less than the semiconductor (quantum) capacitance), the model reduces to Natori's theory of the ballistic MOSFET. The model also treats 2-D electrostatics and the quantum capacitance limit where the semiconductor quantum capacitance is much less than the insulator capacitance. This new model provides insights into the performance of MOSFETs near the scaling limit and a unified framework for assessing and comparing a variety of novel transistors.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Ballistic carbon nanotube field-effect transistors

TL;DR: It is shown that contacting semiconducting single-walled nanotubes by palladium, a noble metal with high work function and good wetting interactions with nanotube, greatly reduces or eliminates the barriers for transport through the valence band of nanot tubes.
Book

Fundamentals of Modern VLSI Devices

Yuan Taur, +1 more
TL;DR: In this article, the authors highlight the intricate interdependencies and subtle tradeoffs between various practically important device parameters, and also provide an in-depth discussion of device scaling and scaling limits of CMOS and bipolar devices.
Journal ArticleDOI

Performance Limits of Monolayer Transition Metal Dichalcogenide Transistors

TL;DR: In this article, the performance limits of monolayer transition metal dichalcogenide ( MX2) transistors with a ballistic MOSFET model were examined with an ab initio theory.
Journal ArticleDOI

CNTFET-Based Design of Ternary Logic Gates and Arithmetic Circuits

TL;DR: A novel design technique for ternary logic gates based onCNTFETs is proposed and compared with the existing resistive-load CNTFET logic gate designs, which provides an excellent speed and power consumption characteristics in datapath circuit such as full adder and multiplier.
Journal ArticleDOI

Nanowire Transistor Performance Limits and Applications

TL;DR: In this paper, the authors review advances in chemically synthesized semiconductor nanowires as nanoelectronic devices and discuss 3-D heterogeneous integration that is uniquely enabled by multifunctional nanowire within a bottom-up approach.
References
More filters
Book

Electronic transport in mesoscopic systems

TL;DR: In this article, preliminary concepts of conductance from transmission, S-matrix and Green's function formalism are discussed. And double-barrier tunnelling is considered.
Book

Physical properties of carbon nanotubes

TL;DR: In this paper, an introductory textbook for graduate students and researchers from various fields of science who wish to learn about carbon nanotubes is presented, focusing on the basic principles behind the physical properties and giving the background necessary to understand the recent developments.

Electronic Transport in Mesoscopic Systems

TL;DR: In this article, preliminary concepts of conductance from transmission, S-matrix and Green's function formalism are discussed. And double-barrier tunnelling is considered.
Journal ArticleDOI

Carbon nanotubes as schottky barrier transistors.

TL;DR: In this paper, the authors show that carbon nanotube transistors operate as unconventional Schottky barrier transistors, in which transistor action occurs primarily by varying the contact resistance rather than the channel conductance.
Journal ArticleDOI

Single-walled carbon nanotube electronics

TL;DR: In this paper, the fabrication and electronic properties of devices based on individual carbon nanotubes are reviewed, and both metallic and semiconducting SWNTs are found to possess electrical characteristics that compare favorably to the best electronic materials available.
Related Papers (5)