scispace - formally typeset
Open AccessJournal ArticleDOI

Tumour evolution inferred by single-cell sequencing

Reads0
Chats0
TLDR
It is shown that with flow-sorted nuclei, whole genome amplification and next generation sequencing the authors can accurately quantify genomic copy number within an individual nucleus and indicate that tumours grow by punctuated clonal expansions with few persistent intermediates.
Abstract
Genomic analysis provides insights into the role of copy number variation in disease, but most methods are not designed to resolve mixed populations of cells. In tumours, where genetic heterogeneity is common, very important information may be lost that would be useful for reconstructing evolutionary history. Here we show that with flow-sorted nuclei, whole genome amplification and next generation sequencing we can accurately quantify genomic copy number within an individual nucleus. We apply single-nucleus sequencing to investigate tumour population structure and evolution in two human breast cancer cases. Analysis of 100 single cells from a polygenomic tumour revealed three distinct clonal subpopulations that probably represent sequential clonal expansions. Additional analysis of 100 single cells from a monogenomic primary tumour and its liver metastasis indicated that a single clonal expansion formed the primary tumour and seeded the metastasis. In both primary tumours, we also identified an unexpectedly abundant subpopulation of genetically diverse 'pseudodiploid' cells that do not travel to the metastatic site. In contrast to gradual models of tumour progression, our data indicate that tumours grow by punctuated clonal expansions with few persistent intermediates.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression.

TL;DR: In this article, the authors used breast cancer as an example of the origins of tumour heterogeneity and cell plasticity, as well as considering interclonal cooperativity and cell-plasticity as sources of cancer cell heterogeneity.
Journal ArticleDOI

Advances in understanding tumour evolution through single-cell sequencing.

TL;DR: The state of the art methods for understanding the phylogeny encoded in bulk or single-cell sequencing data are presented, and future directions for developing more comprehensive and informative pictures of tumour evolution are highlighted.
Journal ArticleDOI

Cancer genome-sequencing study design

TL;DR: This Review discusses how aspects of study design and methodological considerations — such as the size and composition of the discovery cohort — can be tailored to serve specific research aims.
Journal ArticleDOI

Cancer in light of experimental evolution.

TL;DR: It is argued that enhanced prediction and control of cancer may be possible using ideas developed in the context of experimental evolution, and some prospects for future research at the interface between these traditionally separate areas are pointed out.
References
More filters
Journal ArticleDOI

The neighbor-joining method: a new method for reconstructing phylogenetic trees.

TL;DR: The neighbor-joining method and Sattath and Tversky's method are shown to be generally better than the other methods for reconstructing phylogenetic trees from evolutionary distance data.
Journal ArticleDOI

Ultrafast and memory-efficient alignment of short DNA sequences to the human genome

TL;DR: Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches and can be used simultaneously to achieve even greater alignment speeds.
Journal ArticleDOI

The clonal evolution of tumor cell populations

TL;DR: Each patient's cancer may require individual specific therapy, and even this may be thwarted by emergence of a genetically variant subline resistant to the treatment, which should be directed toward understanding and controlling the evolutionary process in tumors before it reaches the late stage usually seen in clinical cancer.
Journal ArticleDOI

Distant metastasis occurs late during the genetic evolution of pancreatic cancer

TL;DR: In this article, the authors rely on data generated by sequencing the genomes of seven pancreatic cancer metastases to evaluate the clonal relationships among primary and metastatic cancers and find that clonal populations that give rise to distant metastases are represented within the primary carcinoma, but these clones are genetically evolved from the original parental, non-metastatic clone.

SF-010-4 Distant metastasis occurs late during the genetic evolution of pancreatic cancer

TL;DR: A quantitative analysis of the timing of the genetic evolution of pancreatic cancer was performed, indicating at least a decade between the occurrence of the initiating mutation and the birth of the parental, non-metastatic founder cell.
Related Papers (5)