scispace - formally typeset
W

W. Richard McCombie

Researcher at Cold Spring Harbor Laboratory

Publications -  147
Citations -  70404

W. Richard McCombie is an academic researcher from Cold Spring Harbor Laboratory. The author has contributed to research in topics: Genome & Gene. The author has an hindex of 71, co-authored 144 publications receiving 64155 citations. Previous affiliations of W. Richard McCombie include Howard Hughes Medical Institute & National Institutes of Health.

Papers
More filters
Journal ArticleDOI

Initial sequencing and analysis of the human genome.

Eric S. Lander, +248 more
- 15 Feb 2001 - 
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Journal ArticleDOI

Initial sequencing and comparative analysis of the mouse genome.

Robert H. Waterston, +222 more
- 05 Dec 2002 - 
TL;DR: The results of an international collaboration to produce a high-quality draft sequence of the mouse genome are reported and an initial comparative analysis of the Mouse and human genomes is presented, describing some of the insights that can be gleaned from the two sequences.
Journal ArticleDOI

The B73 Maize Genome: Complexity, Diversity, and Dynamics

Patrick S. Schnable, +159 more
- 20 Nov 2009 - 
TL;DR: The sequence of the maize genome reveals it to be the most complex genome known to date and the correlation of methylation-poor regions with Mu transposon insertions and recombination and how uneven gene losses between duplicated regions were involved in returning an ancient allotetraploid to a genetically diploid state is reported.
Journal ArticleDOI

The map-based sequence of the rice genome

Takashi Matsumoto, +265 more
- 11 Aug 2005 - 
TL;DR: A map-based, finished quality sequence that covers 95% of the 389 Mb rice genome, including virtually all of the euchromatin and two complete centromeres, and finds evidence for widespread and recurrent gene transfer from the organelles to the nuclear chromosomes.
Journal ArticleDOI

Coming of age: ten years of next-generation sequencing technologies

TL;DR: These and other strategies are providing researchers and clinicians a variety of tools to probe genomes in greater depth, leading to an enhanced understanding of how genome sequence variants underlie phenotype and disease.