scispace - formally typeset
Journal ArticleDOI

Tuning the Activity of Carbon for Electrocatalytic Hydrogen Evolution via an Iridium-Cobalt Alloy Core Encapsulated in Nitrogen-Doped Carbon Cages.

Reads0
Chats0
TLDR
Surface structural and computational studies reveal that the superior behavior originates from the decreased ΔGH* for HER induced by the electrons transferred from the alloy core to the graphene layers, which is beneficial for enhancing CH binding.
Abstract
Graphene, a 2D material consisting of a single layer of sp2 -hybridized carbon, exhibits inert activity as an electrocatalyst, while the incorporation of heteroatoms (such as N) into the framework can tune its electronic properties. Because of the different electronegativity between N and C atoms, electrons will transfer from C to N in N-doped graphene nanosheets, changing inert C atoms adjacent to the N-dopants into active sites. Notwithstanding the achieved progress, its intrinsic activity in acidic media is still far from Pt/C. Here, a facile annealing strategy is adopted for Ir-doped metal-organic frameworks to synthesize IrCo nanoalloys encapsulated in N-doped graphene layers. The highly active electrocatalyst, with remarkably reduced Ir loading (1.56 wt%), achieves an ultralow Tafel slope of 23 mV dec-1 and an overpotential of only 24 mV at a current density of 10 mA cm-2 in 0.5 m sulfuric acid solution. Such superior performance is even superior to the noble-metal catalyst Pt. Surface structural and computational studies reveal that the superior behavior originates from the decreased ΔGH* for HER induced by the electrons transferred from the alloy core to the graphene layers, which is beneficial for enhancing CH binding.

read more

Citations
More filters
Journal ArticleDOI

Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles.

TL;DR: The fundamentals of HER are summarized and the recent state-of-the-art advances in the low-cost and high-performance catalysts based on noble and non-noble metals, as well as metal-free HER electrocatalysts are reviewed.
Journal ArticleDOI

State of the Art and Prospects in Metal-Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis.

TL;DR: This review first briefly summarizes this background of MOF nanoparticle catalysis and then comprehensively reviews the fast-growing literature reported during the last years.
Journal ArticleDOI

MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions

TL;DR: A wide range of applications based on these materials for ORR, OER, HER and multifunctional electrocatalysis are discussed, with an emphasis on the required features of MOF-derived carbon-based materials for the Electrocatalysis of corresponding reactions.
Journal ArticleDOI

Support and Interface Effects in Water-Splitting Electrocatalysts

TL;DR: Recent research progress on the support and interface effects in HER, OER, and overall water-splitting electrocatalysts is highlighted and the correlation between the electronic interaction of the constituent components and the electrocatalyst performance is profoundly discussed.
References
More filters
Journal ArticleDOI

Combining theory and experiment in electrocatalysis: Insights into materials design

TL;DR: A unified theoretical framework highlights the need for catalyst design strategies that selectively stabilize distinct reaction intermediates relative to each other, and opens up opportunities and approaches to develop higher-performance electrocatalysts for a wide range of reactions.
Journal ArticleDOI

Noble metal-free hydrogen evolution catalysts for water splitting

TL;DR: This review highlights the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER), and summarizes some important examples showing that non-Pt HER electrocatsalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalyst.
Journal ArticleDOI

Computational high-throughput screening of electrocatalytic materials for hydrogen evolution

TL;DR: A density functional theory-based, high-throughput screening scheme that successfully uses these strategies to identify a new electrocatalyst for the hydrogen evolution reaction (HER), which is found to have a predicted activity comparable to, or even better than, pure Pt, the archetypical HER catalyst.
Journal ArticleDOI

Towards the computational design of solid catalysts

TL;DR: The first steps towards using computational methods to design new catalysts are reviewed and how, in the future, such methods may be used to engineer the electronic structure of the active surface by changing its composition and structure are discussed.
Journal ArticleDOI

Reaction-Driven Restructuring of Rh-Pd and Pt-Pd Core-Shell Nanoparticles

TL;DR: The different behaviors in restructuring and chemical response of Rh.5.5Pd0.5 and Pt.5 nanoparticle catalysts under the same reaction conditions illustrates the flexibility and tunability of the structure of bimetallic nanoparticles catalysts during catalytic reactions.
Related Papers (5)