scispace - formally typeset
Open AccessJournal ArticleDOI

Ultrahigh humidity sensitivity of graphene oxide

Reads0
Chats0
TLDR
G-O appears to be an ideal material for constructing humidity sensors with ultrahigh sensitivity for widespread applications and has a fast response time and recovery time compared with conventional capacitive humidity sensors.
Abstract
Humidity sensors have been extensively used in various fields, and numerous problems are encountered when using humidity sensors, including low sensitivity, long response and recovery times, and narrow humidity detection ranges. Using graphene oxide (G-O) films as humidity sensing materials, we fabricate here a microscale capacitive humidity sensor. Compared with conventional capacitive humidity sensors, the G-O based humidity sensor has a sensitivity of up to 37800% which is more than 10 times higher than that of the best one among conventional sensors at 15%–95% relative humidity. Moreover, our humidity sensor shows a fast response time (less than 1/4 of that of the conventional one) and recovery time (less than 1/2 of that of the conventional one). Therefore, G-O appears to be an ideal material for constructing humidity sensors with ultrahigh sensitivity for widespread applications.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Advanced Carbon for Flexible and Wearable Electronics.

TL;DR: The latest advances in the rational design and controlled fabrication of carbon materials toward applications in flexible and wearable electronics are reviewed and various carbon materials with controlled micro/nanostructures and designed macroscopic morphologies for high-performance flexible electronics are introduced.
Journal ArticleDOI

Recent advances in graphene based gas sensors

TL;DR: Graphene, a single, one-atom-thick sheet of carbon atoms arranged in a honeycomb lattice and the two-dimensional building block for carbon materials, has attracted great interest for a wide range of applications as discussed by the authors.
Journal ArticleDOI

Flexible Graphene-Based Wearable Gas and Chemical Sensors

TL;DR: The role of graphene in fabricating flexible gas sensors for the detection of various hazardous gases, including nitrogen dioxide, ammonia, hydrogen, hydrogen sulfide, carbon dioxide, sulfur dioxide, and humidity in wearable technology, is discussed.
Journal ArticleDOI

Graphene-based smart materials

TL;DR: In this article, different graphene-based smart materials are described, along with their potential applications in actuators, chemical or strain sensors, self-healing materials, photothermal therapy and controlled drug delivery.
Journal ArticleDOI

Stretchable and Multimodal All Graphene Electronic Skin.

TL;DR: A transparent and stretchable all-graphene multifunctional electronic-skin sensor matrix is developed that combines humidity, thermal, and pressure sensors into a layer-by-layer geometry through a simple lamination process.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

Superior Thermal Conductivity of Single-Layer Graphene

TL;DR: The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction and establishes graphene as an excellent material for thermal management.
Journal ArticleDOI

Detection of individual gas molecules adsorbed on graphene

TL;DR: In this paper, it was shown that micrometre-size sensors made from graphene are capable of detecting individual events when a gas molecule attaches to or detaches from graphene's surface.
Related Papers (5)