scispace - formally typeset
Open AccessJournal ArticleDOI

Use of DNA barcodes to identify flowering plants

Reads0
Chats0
TLDR
Comparison of the total plastid genomes of tobacco and deadly nightshade enhanced with trials on widely divergent angiosperm taxa suggest that the sequences in this pair of loci have the potential to discriminate among the largest number of plant species for barcoding purposes.
Abstract
Methods for identifying species by using short orthologous DNA sequences, known as “DNA barcodes,” have been proposed and initiated to facilitate biodiversity studies, identify juveniles, associate sexes, and enhance forensic analyses. The cytochrome c oxidase 1 sequence, which has been found to be widely applicable in animal barcoding, is not appropriate for most species of plants because of a much slower rate of cytochrome c oxidase 1 gene evolution in higher plants than in animals. We therefore propose the nuclear internal transcribed spacer region and the plastid trnH-psbA intergenic spacer as potentially usable DNA regions for applying barcoding to flowering plants. The internal transcribed spacer is the most commonly sequenced locus used in plant phylogenetic investigations at the species level and shows high levels of interspecific divergence. The trnH-psbA spacer, although short (≈450-bp), is the most variable plastid region in angiosperms and is easily amplified across a broad range of land plants. Comparison of the total plastid genomes of tobacco and deadly nightshade enhanced with trials on widely divergent angiosperm taxa, including closely related species in seven plant families and a group of species sampled from a local flora encompassing 50 plant families (for a total of 99 species, 80 genera, and 53 families), suggest that the sequences in this pair of loci have the potential to discriminate among the largest number of plant species for barcoding purposes.

read more

Citations
More filters
Journal ArticleDOI

De novo sequencing of the Hypericum perforatum L. flower transcriptome to identify potential genes that are related to plant reproduction sensu lato

TL;DR: The present analyses aim to pave the way toward a better understanding of the molecular basis of flower development and plant reproduction, by identifying genes or RNAs that may differentiate or regulate the sexual and apomictic reproductive pathways in H. perforatum.
Journal ArticleDOI

DNA barcodes for Mexican Cactaceae, plants under pressure from wild collecting.

TL;DR: It is concluded that the matK region should provide useful information as a DNA barcode for Cactaceae if the problems with primers can be addressed, but matK alone is not sufficiently variable to achieve species‐level identification.
Journal ArticleDOI

Phylogenetic reconstruction at the species and intraspecies levels in the genus Pisum (L.) (peas) using a histone H1 gene

TL;DR: A phylogenetic analysis of the genus Pisum (peas), embracing diverse wild and cultivated forms, which evoke problems with species delimitation, was carried out based on a gene coding for histone H1, a protein that has a long and variable functional C-terminal domain.
Journal ArticleDOI

Phylogenetics of Otatea Inferred from Morphology and Chloroplast DNA Sequence Data, and Recircumscription of Guaduinae (Poaceae: Bambusoideae)

TL;DR: Phylogenetic analysis of a combined data set retrieved 53 most parsimonious trees in which subtribe Guaduinae is monophyletic if two species of Anlonemia (A. clarkiae and A. fulgor) are included.
Journal ArticleDOI

Application of DNA Barcodes in Asian Tropical Trees - A Case Study from Xishuangbanna Nature Reserve, Southwest China

TL;DR: Although the core barcodes rbcL and matK were not suitable for species identification of tropical trees from Xishuangbanna Nature Reserve, they could still help with identification at the family and genus level and are recommended as the preferred barcodes for tropical tree species identification in China.
References
More filters
Book

PCR protocols : A guide to methods and applications

TL;DR: Basic Methodology: M.A. Innis and D.F. Frohman, RACE: Rapid Amplification of cDNA Ends, and RNA Processing: Apo-B.R. Kwok, Procedure to Minimuze PCR-Product Carry-Over.
Journal ArticleDOI

Biological identifications through DNA barcodes

TL;DR: It is established that the mitochondrial gene cytochrome c oxidase I (COI) can serve as the core of a global bioidentification system for animals and will provide a reliable, cost–effective and accessible solution to the current problem of species identification.
Journal ArticleDOI

Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator

TL;DR: The results add to the evidence that cryptic species are prevalent in tropical regions, a critical issue in efforts to document global species richness, and illustrate the value of DNA barcoding, especially when coupled with traditional taxonomic tools, in disclosing hidden diversity.
Journal ArticleDOI

The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression.

TL;DR: Five sequences coding for proteins homologous to components of the respiratory‐chain NADH dehydrogenase from human mitochondria have been found and sequence and expression analyses indicate both prokaryotic and eukaryotic features of the chloroplast genes.
Journal ArticleDOI

Identification of Birds through DNA Barcodes

TL;DR: The finding of large COI sequence differences between, as compared to small differences within, species confirms the effectiveness of COI barcodes for the identification of bird species, and implies that a standard screening threshold of sequence difference could speed the discovery of new animal species.
Related Papers (5)

A DNA barcode for land plants.

Peter M. Hollingsworth, +55 more