scispace - formally typeset
Journal ArticleDOI

Wearable, Healable, and Adhesive Epidermal Sensors Assembled from Mussel-Inspired Conductive Hybrid Hydrogel Framework

Reads0
Chats0
TLDR
In this paper, conductive, adhesive, wearable, and soft human-motion sensors are successfully assembled from conductive and human-friendly hybrid hydrogels with reliable self-healing capability and robust self-adhesiveness.
Abstract
Healable, adhesive, wearable, and soft human-motion sensors for ultrasensitive human–machine interaction and healthcare monitoring are successfully assembled from conductive and human-friendly hybrid hydrogels with reliable self-healing capability and robust self-adhesiveness. The conductive, healable, and self-adhesive hybrid network hydrogels are prepared from the delicate conformal coating of conductive functionalized single-wall carbon nanotube (FSWCNT) networks by dynamic supramolecular cross-linking among FSWCNT, biocompatible polyvinyl alcohol, and polydopamine. They exhibit fast self-healing ability (within 2 s), high self-healing efficiency (99%), and robust adhesiveness, and can be assembled as healable, adhesive, and soft human-motion sensors with tunable conducting channels of pores for ions and framework for electrons for real time and accurate detection of both large-scale and tiny human activities (including bending and relaxing of fingers, walking, chewing, and pulse). Furthermore, the soft human-motion sensors can be enabled to wirelessly monitor the human activities by coupling to a wireless transmitter. Additionally, the in vitro cytotoxicity results suggest that the hydrogels show no cytotoxicity and can facilitate cell attachment and proliferation. Thus, the healable, adhesive, wearable, and soft human-motion sensors have promising potential in various wearable, wireless, and soft electronics for human–machine interfaces, human activity monitoring, personal healthcare diagnosis, and therapy.

read more

Citations
More filters
Journal ArticleDOI

A Robust, Tough and Multifunctional Polyurethane/Tannic Acid Hydrogel Fabricated by Physical-Chemical Dual Crosslinking.

TL;DR: This work shows a simple and versatile method to prepare a multifunctional DC single network PEG–PU hydrogel with excellent mechanical properties, and is expected to facilitate developments in the biomedical field.
Journal ArticleDOI

Flexible wearable sensors based on lignin doped organohydrogels with multi-functionalities

TL;DR: In this article, highly stretchable PADL organohydrogels which consist of lignosulfonate nanoparticles (nano-LGS) doped poly(acrylic acid-co-2-(methacryloyloxy)ethyl trimethyl ammonium chloride) in Glycerol/H2O were prepared by a facile strategy.
Journal ArticleDOI

Biomimetic integration of tough polymer elastomer with conductive hydrogel for highly stretchable, flexible electronic

TL;DR: In this article, a biomimetic double-layered multifunctional flexible electronic device composed of a stretchable, tough elastomer covalently coupled with a conductive, double-network hydrogel for monitoring physiological motions is presented.
Journal ArticleDOI

Biomimetic integration of tough polymer elastomer with conductive hydrogel for highly stretchable, flexible electronic

TL;DR: In this paper , a biomimetic double-layered multifunctional flexible electronic device composed of a stretchable, tough elastomer covalently coupled with a conductive, double-network hydrogel for monitoring physiological motions is presented.
Journal ArticleDOI

Stretchable and self-healable hydrogel-based capacitance pressure and strain sensor for electronic skin systems

TL;DR: In this article, the authors designed a self-healing hydrogel by formation of the hydrogen bonds and dual metal-carboxylate coordination bonds among pectin, poly(acrylic acid) and metal ions.
References
More filters
Journal ArticleDOI

Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review

TL;DR: In this article, the authors present recent advancements in the development of flexible and stretchable strain sensors, including skin-mountable and wearable strain sensors for personalized health-monitoring, human motion detection, human-machine interfaces, soft robotics, and so forth.
Journal ArticleDOI

Single-molecule mechanics of mussel adhesion

TL;DR: A single-molecule study of the substrate and oxidation-dependent adhesive properties of dopa is reported, in which dopa exploits a remarkable combination of high strength and chemical multifunctionality to accomplish adhesion to substrates of widely varying composition.
Journal ArticleDOI

Fiber‐Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications

TL;DR: This article attempts to critically review the current state-of-arts with respect to materials, fabrication techniques, and structural design of devices as well as applications of the fiber-based wearable electronic products.
Journal ArticleDOI

Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human-Activity Monitoringand Personal Healthcare.

TL;DR: The latest successful examples of flexible and stretchable physical sensors for the detection of temperature, pressure, and strain, as well as their novel structures, technological innovations, and challenges, are reviewed.
Journal ArticleDOI

An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications

TL;DR: This work describes a composite material composed of a supramolecular organic polymer with embedded nickel nanostructured microparticles, which shows mechanical and electrical self-healing properties at ambient conditions and shows that the material is pressure- and flexion-sensitive, and therefore suitable for electronic skin applications.
Related Papers (5)