scispace - formally typeset
Search or ask a question
Topic

Fractography

About: Fractography is a research topic. Over the lifetime, 5043 publications have been published within this topic receiving 86068 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a numerical model of crack initiation is proposed to describe the transition of fatigue initiation site from subsurface to surface for specimens tested in air and 3.5% NaCl solution.

67 citations

Journal ArticleDOI
TL;DR: In this paper, the authors performed parent material tests on a number of different CT specimen designs in order to investigate the effects of side grooves on the shape of the crack front and found that the crack growth rates in the weld specimens are about four times higher than those of the parent material specimens, at the same C ∗.

67 citations

Journal ArticleDOI
TL;DR: In this article, the influences of boundary conditions during LBM of EN AW-2219 on sample porosity and tensile test results, supported by metallographic microsections and fractography, were discussed.
Abstract: Additive manufacturing is especially suitable for complex-shaped 3D parts with integrated and optimized functionality realized by filigree geometries. Such designs benefit from low safety factors in mechanical layout. This demands ductile materials that reduce stress peaks by predictable plastic deformation instead of failure. Al–Cu wrought alloys are established materials meeting this requirement. Additionally, they provide high specific strengths. As the designation “Wrought Alloys” implies, they are intended for manufacturing by hot or cold working. When cast or welded, they are prone to solidification cracks. Al–Si fillers can alleviate this, but impair ductility. Being closely related to welding, Laser Beam Melting in Powder Bed (LBM) of Al–Cu wrought alloys like EN AW-2219 can be considered challenging. In LBM of aluminium alloys, only easily-weldable Al–Si casting alloys have succeeded commercially today. This article discusses the influences of boundary conditions during LBM of EN AW-2219 on sample porosity and tensile test results, supported by metallographic microsections and fractography. Load direction was varied relative to LBM build-up direction. T6 heat treatment was applied to half of the samples. Pronounced anisotropy was observed. Remarkably, elongation at break of T6 specimens loaded along the build-up direction exceeded the values from literature for conventionally manufactured EN AW-2219 by a factor of two.

67 citations

Book ChapterDOI
23 Aug 2011
TL;DR: In this article, an alternative route referred to as the Indentation Fracture technique has been widely accepted with this purpose and extensively reported in literature (Weisbrod & Rittel, 2000; Plaza, 2003; Evans & Charles, 1976; Niihara et al., 1982).
Abstract: The assessment of fracture toughness (KIC) on fragile materials such as ceramics or composites through conventional methods can be arduous. Recently, an alternative route referred to as the Indentation Fracture technique has been widely accepted with this purpose and extensively reported in literature (Weisbrod & Rittel, 2000; Plaza, 2003; Evans & Charles, 1976; Niihara et al., 1982). Different authors have derived math equations series as to fine tune and match with KIC determination; those equations are based in the lineal mechanical fracture theory (Wang, 1996). The indentation fracture method and its application procedure are described in this chapter, whereas typical problems involved in the test are shown. Al2O3-based composites with different reinforced metals fabricated by both; liquid and solid pressureless sintering of an intensive mechanical mixture of powders were used as studied materials. Ceramic materials have properties of great interest for various structural applications, specifically those that take advantage of their high hardness, chemical and thermal stability in addition to their high stiffness. However, their great fragility has severely limited their applications, although they have developed ceramic with reinforcement materials precisely to increase the toughness of the same (Miranda et al., 2006; Konopka & Szafran, 2006; Marci & Katarzyna, 2007; Travirskya et al., 2003; Sglavo, 1997). One of the macroscopic properties that characterize the fragility of a ceramic is the fracture toughness (KIC). The fracture toughness describes the ease with which propagates a crack or defect in a material. This property can be assessed through various methods such as: Analytical solution, solution by numerical methods (finite element, boundary integral, etc.). Experimental methods such as: complianza, fotoelasticity, strain gauge, etc. and indirect methods such as: propagation of fatigue cracks, indentation, fractography, etc. The choice of method for determining the fracture toughness depends on the availability of time, resources and level of precision required for the application. In practice, measurements of KIC require certain microstructural conditions on the material to allow propagation of cracks through it in a consistent manner. The strength of materials is governed by the known theory of Griffith, which relates the strength (S) with the size of the defect or crack (c) by S = YKIC/c1/2. This expression suggests the need to reduce the grain size and processing defects in the final microstructure to optimize the mechanical performance. Moreover, with increasing KIC, resistance becomes less dependent on the size of the defect, thereby producing a more tolerant material to cracking. Due to high elastic modulus and low values of KIC in brittle materials, achieving in them a stable crack growth is complicated and sometimes it is necessary sophisticated

67 citations

Journal ArticleDOI
TL;DR: In this article, two Ti-activated brazes have been investigated for joining of a Si 3 N 4 /TiN ceramic composite to steel, and an average bending strength of 466 MPa was achieved when joining ceramic to ceramic and 398 MPa when joining ceramics to metal.

67 citations


Network Information
Related Topics (5)
Microstructure
148.6K papers, 2.2M citations
91% related
Alloy
171.8K papers, 1.7M citations
91% related
Fracture mechanics
58.3K papers, 1.3M citations
90% related
Grain boundary
70.1K papers, 1.5M citations
89% related
Ultimate tensile strength
129.2K papers, 2.1M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023120
2022254
2021229
2020206
2019206
2018176