scispace - formally typeset
Search or ask a question

Showing papers on "Node (networking) published in 2008"


Journal ArticleDOI
17 Aug 2008
TL;DR: Results from theoretical analysis, simulations, and experiments show that DCell is a viable interconnection structure for data centers and can be incrementally expanded and a partial DCell provides the same appealing features.
Abstract: A fundamental challenge in data center networking is how to efficiently interconnect an exponentially increasing number of servers. This paper presents DCell, a novel network structure that has many desirable features for data center networking. DCell is a recursively defined structure, in which a high-level DCell is constructed from many low-level DCells and DCells at the same level are fully connected with one another. DCell scales doubly exponentially as the node degree increases. DCell is fault tolerant since it does not have single point of failure and its distributed fault-tolerant routing protocol performs near shortest-path routing even in the presence of severe link or node failures. DCell also provides higher network capacity than the traditional tree-based structure for various types of services. Furthermore, DCell can be incrementally expanded and a partial DCell provides the same appealing features. Results from theoretical analysis, simulations, and experiments show that DCell is a viable interconnection structure for data centers.

1,170 citations


Journal ArticleDOI
01 Jun 2008
TL;DR: This paper reports on the current state of the research on optimized node placement in WSNs, and categorizes the placement strategies into static and dynamic depending on whether the optimization is performed at the time of deployment or while the network is operational, respectively.
Abstract: The major challenge in designing wireless sensor networks (WSNs) is the support of the functional, such as data latency, and the non-functional, such as data integrity, requirements while coping with the computation, energy and communication constraints. Careful node placement can be a very effective optimization means for achieving the desired design goals. In this paper, we report on the current state of the research on optimized node placement in WSNs. We highlight the issues, identify the various objectives and enumerate the different models and formulations. We categorize the placement strategies into static and dynamic depending on whether the optimization is performed at the time of deployment or while the network is operational, respectively. We further classify the published techniques based on the role that the node plays in the network and the primary performance objective considered. The paper also highlights open problems in this area of research.

924 citations


Proceedings ArticleDOI
24 Aug 2008
TL;DR: A complete model of network evolution, where nodes arrive at a prespecified rate and select their lifetimes, and the combination of the gap distribution with the node lifetime leads to a power law out-degree distribution that accurately reflects the true network in all four cases is presented.
Abstract: We present a detailed study of network evolution by analyzing four large online social networks with full temporal information about node and edge arrivals. For the first time at such a large scale, we study individual node arrival and edge creation processes that collectively lead to macroscopic properties of networks. Using a methodology based on the maximum-likelihood principle, we investigate a wide variety of network formation strategies, and show that edge locality plays a critical role in evolution of networks. Our findings supplement earlier network models based on the inherently non-local preferential attachment.Based on our observations, we develop a complete model of network evolution, where nodes arrive at a prespecified rate and select their lifetimes. Each node then independently initiates edges according to a "gap" process, selecting a destination for each edge according to a simple triangle-closing model free of any parameters. We show analytically that the combination of the gap distribution with the node lifetime leads to a power law out-degree distribution that accurately reflects the true network in all four cases. Finally, we give model parameter settings that allow automatic evolution and generation of realistic synthetic networks of arbitrary scale.

829 citations


Journal ArticleDOI
TL;DR: This work describes conditions when a close relationship exists between network analysis and microarray data analysis techniques, and provides a rough dictionary for translating between the two fields.
Abstract: The merging of network theory and microarray data analysis techniques has spawned a new field: gene coexpression network analysis. While network methods are increasingly used in biology, the network vocabulary of computational biologists tends to be far more limited than that of, say, social network theorists. Here we review and propose several potentially useful network concepts. We take advantage of the relationship between network theory and the field of microarray data analysis to clarify the meaning of and the relationship among network concepts in gene coexpression networks. Network theory offers a wealth of intuitive concepts for describing the pairwise relationships among genes, which are depicted in cluster trees and heat maps. Conversely, microarray data analysis techniques (singular value decomposition, tests of differential expression) can also be used to address difficult problems in network theory. We describe conditions when a close relationship exists between network analysis and microarray data analysis techniques, and provide a rough dictionary for translating between the two fields. Using the angular interpretation of correlations, we provide a geometric interpretation of network theoretic concepts and derive unexpected relationships among them. We use the singular value decomposition of module expression data to characterize approximately factorizable gene coexpression networks, i.e., adjacency matrices that factor into node specific contributions. High and low level views of coexpression networks allow us to study the relationships among modules and among module genes, respectively. We characterize coexpression networks where hub genes are significant with respect to a microarray sample trait and show that the network concept of intramodular connectivity can be interpreted as a fuzzy measure of module membership. We illustrate our results using human, mouse, and yeast microarray gene expression data. The unification of coexpression network methods with traditional data mining methods can inform the application and development of systems biologic methods.

731 citations


Journal ArticleDOI
TL;DR: SocialCast is proposed, a routing framework for publish-subscribe that exploits predictions based on metrics of social interaction to identify the best information carriers and shows that prediction of colocation and node mobility allow for maintaining a very high and steady event delivery with low overhead and latency.
Abstract: Applications involving the dissemination of information directly relevant to humans (e.g., service advertising, news spreading, environmental alerts) often rely on publish-subscribe, in which the network delivers a published message only to the nodes whose subscribed interests match it. In principle, publish- subscribe is particularly useful in mobile environments, since it minimizes the coupling among communication parties. However, to the best of our knowledge, none of the (few) works that tackled publish-subscribe in mobile environments has yet addressed intermittently-connected human networks. Socially-related people tend to be co-located quite regularly. This characteristic can be exploited to drive forwarding decisions in the interest-based routing layer supporting the publish-subscribe network, yielding not only improved performance but also the ability to overcome high rates of mobility and long-lasting disconnections. In this paper we propose SocialCast, a routing framework for publish-subscribe that exploits predictions based on metrics of social interaction (e.g., patterns of movements among communities) to identify the best information carriers. We highlight the principles underlying our protocol, illustrate its operation, and evaluate its performance using a mobility model based on a social network validated with real human mobility traces. The evaluation shows that prediction of colocation and node mobility allow for maintaining a very high and steady event delivery with low overhead and latency, despite the variation in density, number of replicas per message or speed.

513 citations


Journal ArticleDOI
TL;DR: Several state-of-the-art algorithms and techniques are presented and compared that aim to address the coverage-connectivity issue in wireless sensor networks.

508 citations


Journal ArticleDOI
TL;DR: It is concluded that in a circular multihop sensor network with nonuniform node distribution and constant data reporting, the unbalanced energy depletion among all the nodes in the network is unavoidable.
Abstract: In this paper, we investigate the theoretical aspects of the nonuniform node distribution strategy used to mitigate the energy hole problem in wireless sensor networks (WSNs). We conclude that in a circular multihop sensor network (modeled as concentric coronas) with nonuniform node distribution and constant data reporting, the unbalanced energy depletion among all the nodes in the network is unavoidable. Even if the nodes in the inner coronas of the network have used up their energy simultaneously, the ones in the outermost corona may still have unused energy. This is due to the intrinsic many-to-one traffic pattern of WSNs. Nevertheless, nearly balanced energy depletion in the network is possible if the number of nodes increases in geometric progression from the outer coronas to the inner ones except the outermost one. Based on the analysis, we propose a novel nonuniform node distribution strategy to achieve nearly balanced energy depletion in the network. We regulate the number of nodes in each corona and derive the ratio between the node densities in the adjacent (i + 1)th and ith coronas by the strategy. Finally, we propose (q-switch routing, a distributed shortest path routing algorithm tailored for the proposed nonuniform node distribution strategy. Extensive simulations have been performed to validate the analysis.

480 citations


Proceedings ArticleDOI
22 Apr 2008
TL;DR: This paper introduces CHEF - cluster head election mechanism using fuzzy logic, and proves efficiency of CHEF compared with LEACH using the matlab, showing that CHEF is about 22.7% more efficient than LEACH.
Abstract: In designing the wireless sensor networks, the energy is the most important consideration because the lifetime of the sensor node is limited by the battery of it. To overcome this demerit many research have been done. The clustering is the one of the representative approaches. In the clustering, the cluster heads gather data from nodes, aggregate it and send the information to the base station. In this way, the sensor nodes can reduce communication overheads that may be generated if each sensor node reports sensed data to the base station independently. LEACH is one of the most famous clustering mechanisms. It elects a cluster head based on probability model. This approach may reduce the network lifetime because LEACH does not consider the distribution of sensor nodes and the energy remains of each node. However, using the location and the energy information in the clustering can generate big overheads. In this paper we introduce CHEF - cluster head election mechanism using fuzzy logic. By using fuzzy logic, collecting and calculating overheads can be reduced and finally the lifetime of the sensor networks can be prolonged. To prove efficiency of CHEF, we simulated CHEF compared with LEACH using the matlab. Our simulation results show that CHEF is about 22.7% more efficient than LEACH.

480 citations


Journal ArticleDOI
TL;DR: Averaging over many configurations of perturbed electrical network, results point to a sizeable amplification of the effects of faults on the electrical network on the communication network, also in the case of a moderate coupling between the two networks.
Abstract: We investigate the consequence of failures, occurring on the electrical grid, on a telecommunication network We have focused on the Italian electrical transmission network and the backbone of the internet network for research (GARR) Electrical network has been simulated using the DC power flow method; data traffic on GARR by a model of the TCP/IP basic features The status of GARR nodes has been related to the power level of the (geographically) neighbouring electrical nodes (if the power level of a node is lower than a threshold, all communication nodes depending on it are switched off) The electrical network has been perturbed by lines removal: the consequent re-dispatching reduces the power level in all nodes This reduces the number of active GARR nodes and, thus, its Quality of Service (QoS) Averaging over many configurations of perturbed electrical network, we have correlated the degradation of the electrical network with that of the communication network Results point to a sizeable amplification of the effects of faults on the electrical network on the communication network, also in the case of a moderate coupling between the two networks

471 citations


Posted Content
TL;DR: In this paper, a two-step amplify-and-forward protocol is used, in which the transmitter and relays not only use match filters to form a beam at the receiver but also adaptively adjust their transmit powers according to the channel strength information.
Abstract: This paper is on beamforming in wireless relay networks with perfect channel information at relays, the receiver, and the transmitter if there is a direct link between the transmitter and receiver. It is assumed that every node in the network has its own power constraint. A two-step amplify-and-forward protocol is used, in which the transmitter and relays not only use match filters to form a beam at the receiver but also adaptively adjust their transmit powers according to the channel strength information. For a network with any number of relays and no direct link, the optimal power control is solved analytically. The complexity of finding the exact solution is linear in the number of relays. Our results show that the transmitter should always use its maximal power and the optimal power used at a relay is not a binary function. It can take any value between zero and its maximum transmit power. Also, this value depends on the quality of all other channels in addition to the relay's own channels. Despite this coupling fact, distributive strategies are proposed in which, with the aid of a low-rate broadcast from the receiver, a relay needs only its own channel information to implement the optimal power control. Simulated performance shows that network beamforming achieves the maximal diversity and outperforms other existing schemes. Then, beamforming in networks with a direct link are considered. We show that when the direct link exists during the first step only, the optimal power control is the same as that of networks with no direct link. For networks with a direct link during the second step, recursive numerical algorithms are proposed to solve the power control problem. Simulation shows that by adjusting the transmitter and relays' powers adaptively, network performance is significantly improved.

436 citations


Journal ArticleDOI
17 Aug 2008
TL;DR: The design, implementation, and evaluation of novel migration techniques for virtual routers with either hardware or software data planes are presented, showing that VROOM is transparent to routing protocols and results in no performance impact on the data traffic when a hardware-based data plane is used.
Abstract: The complexity of network management is widely recognized as one of the biggest challenges facing the Internet today. Point solutions for individual problems further increase system complexity while not addressing the underlying causes. In this paper, we argue that many network-management problems stem from the same root cause---the need to maintain consistency between the physical and logical configuration of the routers. Hence, we propose VROOM (Virtual ROuters On the Move), a new network-management primitive that avoids unnecessary changes to the logical topology by allowing (virtual) routers to freely move from one physical node to another. In addition to simplifying existing network-management tasks like planned maintenance and service deployment, VROOM can also help tackle emerging challenges such as reducing energy consumption. We present the design, implementation, and evaluation of novel migration techniques for virtual routers with either hardware or software data planes. Our evaluation shows that VROOM is transparent to routing protocols and results in no performance impact on the data traffic when a hardware-based data plane is used.

Patent
27 Oct 2008
TL;DR: In this paper, a gateway is provided that communicates with a femto cell to extend service to an area that otherwise does not receive coverage from a service provider, such as a home or business.
Abstract: Systems and methods are provided that allow inter-working between communication networks for the delivery of service to mobile nodes. A gateway is provided that communicates with a femto cell to extend service to an area that otherwise does not receive coverage from a service provider. The femto cell is a small scale base station used to provide coverage over a small area (such as a home or business), and connect to a home or enterprise network. The femto cell provides service for a mobile node and a gateway permits communication over a broadband network. The gateway integrates the mobile nodes connecting via a femto cell into the service provider's network. The gateway also allows provisioning of services and applications, control of service levels, and provides seamless handoffs to marco base stations and other types of access technologies such as Wi-Fi.

01 Oct 2008
TL;DR: This document introduces extensions to Mobile IPv6 and IPv6 Neighbour Discovery to allow for local mobility handling and the Mobility Anchor Point (MAP) described in this document can also be used to improve the performance of Mobile IPv 6 in terms of handover speed.
Abstract: This document introduces extensions to Mobile IPv6 and IPv6 Neighbour Discovery to allow for local mobility handling. Hierarchical mobility management for Mobile IPv6 is designed to reduce the amount of signalling between the Mobile Node, its Correspondent Nodes, and its Home Agent. The Mobility Anchor Point (MAP) described in this document can also be used to improve the performance of Mobile IPv6 in terms of handover speed.

Journal ArticleDOI
TL;DR: This paper designs centralized and distributed algorithms for the problem of assigning channels to communication links in the network with the objective of minimizing the overall network interference, and develops a semidefinite program and a linear program formulation of the optimization problem to obtain lower bounds onOverall network interference.
Abstract: In this paper, we consider multihop wireless mesh networks, where each router node is equipped with multiple radio interfaces, and multiple channels are available for communication. We address the problem of assigning channels to communication links in the network with the objective of minimizing the overall network interference. Since the number of radios on any node can be less than the number of available channels, the channel assignment must obey the constraint that the number of different channels assigned to the links incident on any node is at most the number of radio interfaces on that node. The above optimization problem is known to be NP-hard. We design centralized and distributed algorithms for the above channel assignment problem. To evaluate the quality of the solutions obtained by our algorithms, we develop a semidefinite program and a linear program formulation of our optimization problem to obtain lower bounds on overall network interference. Empirical evaluations on randomly generated network graphs show that our algorithms perform close to the above established lower bounds, with the difference diminishing rapidly with increase in number of radios. Also, ns-2 simulations, as well as experimental studies on testbed, demonstrate the performance potential of our channel assignment algorithms in 802.11-based multiradio mesh networks.

Proceedings ArticleDOI
05 Nov 2008
TL;DR: Disco, an asynchronous neighbor discovery and rendezvous protocol that allows two or more nodes to operate their radios at low duty cycles and yet still discover and communicate with one another during infrequent, opportunistic encounters without requiring any prior synchronization information is presented.
Abstract: We present Disco, an asynchronous neighbor discovery and rendezvous protocol that allows two or more nodes to operate their radios at low duty cycles (e.g. 1%) and yet still discover and communicate with one another during infrequent, opportunistic encounters without requiring any prior synchronization information. The key challenge is to operate the radio at a low duty cycle but still ensure that discovery is fast, reliable, and predictable over a range of operating conditions. Disco nodes pick a pair of prime numbers such that the sum of their reciprocals is equal to the desired radio duty cycle. Each node increments a local counter with a globallyfixed period. If a node's local counter value is divisible by either of its primes, then the node turns on its radio for one period. This protocol ensures that two nodes will have some overlapping radio on-time within a bounded number of periods, even if nodes independently set their own duty cycle. Once a neighbor is discovered, and its wakeup schedule known, rendezvous is just a matter of being awake during the neighbor's next wakeup period,for synchronous rendezvous, or during an overlapping wake period, for asynchronous rendezvous.

01 Sep 2008
TL;DR: This document describes the use of loop-free alternates to provide local protection for unicast traffic in pure IP and MPLS/LDP networks in the event of a single failure, whether link, node or shared risk link group (SRLG).
Abstract: This document describes the use of loop-free alternates to provide local protection for unicast traffic in pure IP and MPLS/LDP networks in the event of a single failure, whether link, node or shared risk link group (SRLG). The goal of this technology is to reduce the packet loss that happens while routers converge after a topology change due to a failure. Rapid failure repair is achieved through use of precalculated backup next-hops that are loop-free and safe to use until the distributed network convergence process completes. This simple approach does not require any support from other routers. The extent to which this goal can be met by this specification is dependent on the topology of the network.

Patent
14 Aug 2008
TL;DR: In this article, a network accessible node facilitates management of a fleet of portable communication devices (EIR terminal), including portable data terminals and/or barcode readers, by directing performance of software upgrade or configuration update actions by one or more members of the fleet of EIR terminals.
Abstract: A network accessible node that facilitates management of a fleet of portable communication devices (EIR terminal), including portable data terminals and/or barcode readers, by directing performance of software upgrade and/or configuration update actions by one or more members of the fleet of EIR terminals.

Journal ArticleDOI
TL;DR: In this work the capacity region of the broadcast phase in terms of the maximal probability of error is determined and is characterized by the mutual informations of the separate channels coupled by the common input.
Abstract: In a three-node network bidirectional communication between two nodes can be enabled by a half-duplex relay node with a decode-and-forward protocol. In the first phase, the messages of two nodes are transmitted to the relay node. In the second phase a re-encoded composition is broadcasted by the relay node. In this work the capacity region of the broadcast phase in terms of the maximal probability of error is determined. It is characterized by the mutual informations of the separate channels coupled by the common input.

Journal ArticleDOI
TL;DR: A novel energy-efficient MAC Protocol designed specifically for wireless body area sensor networks (WBASN) focused towards pervasive healthcare applications, which leads to significant energy reductions for this application compared to more ldquoflexiblerdquo network MAC protocols such as 802.11 or Zigbee.
Abstract: This paper presents a novel energy-efficient MAC Protocol designed specifically for wireless body area sensor networks (WBASN) focused towards pervasive healthcare applications. Wireless body area networks consist of wireless sensor nodes attached to the human body to monitor vital signs such as body temperature, activity or heart-rate. The network adopts a master-slave architecture, where the body-worn slave node periodically sends sensor readings to a central master node. Unlike traditional peer-to-peer wireless sensor networks, the nodes in this biomedical WBASN are not deployed in an ad hoc fashion. Joining a network is centrally managed and all communications are single-hop. To reduce energy consumption, all the sensor nodes are in standby or sleep mode until the centrally assigned time slot. Once a node has joined a network, there is no possibility of collision within a cluster as all communication is initiated by the central node and is addressed uniquely to a slave node. To avoid collisions with nearby transmitters, a clear channel assessment algorithm based on standard listen-before-transmit (LBT) is used. To handle time slot overlaps, the novel concept of a wakeup fallback time is introduced. Using single-hop communication and centrally controlled sleep/wakeup times leads to significant energy reductions for this application compared to more ldquoflexiblerdquo network MAC protocols such as 802.11 or Zigbee. As duty cycle is reduced, the overall power consumption approaches the standby power. The protocol is implemented in hardware as part of the Sensiumtrade system-on-chip WBASN ASIC, in a 0.13- mum CMOS process.

Proceedings ArticleDOI
22 Apr 2008
TL;DR: This paper proposes an energy efficient multichannel MAC protocol, Y-MAC, for WSNs, and implemented it on a real sensor node platform and conducted extensive experiments to evaluate its performance.
Abstract: As the use of wireless sensor networks (WSNs) becomes widespread, node density tends to increase. This poses a new challenge for Medium Access Control (MAC) protocol design. Although traditional MAC protocols achieve low-power operation, they use only a single channel which limits their performance. Several multi-channel MAC protocols for WSNs have been recently proposed. One of the key observations is that these protocols are less energy efficient than single-channel MAC protocols under light traffic conditions. In this paper, we propose an energy efficient multi-channel MAC protocol, Y-MAC, for WSNs. Our goal is to achieve both high performance and energy efficiency under diverse traffic conditions. In contrast to most of previous multi-channel MAC protocols for WSNs, we implemented Y-MAC on a real sensor node platform and conducted extensive experiments to evaluate its performance. Experimental results show that Y-MAC is energy efficient and maintains high performance under high-traffic conditions.

Journal ArticleDOI
17 Aug 2008
TL;DR: A system that improves the throughput of wireless mesh networks by using physical layer hints to make their best guess about which bits in a corrupted packet are likely to be correct and forward them to the destination, and incorporates an end-to-end error correction component that the destination uses to correct any errors that might seep through.
Abstract: This paper describes MIXIT, a system that improves the throughput of wireless mesh networks. MIXIT exploits a basic property of mesh networks: even when no node receives a packet correctly, any given bit is likely to be received by some node correctly. Instead of insisting on forwarding only correct packets, MIXIT routers use physical layer hints to make their best guess about which bits in a corrupted packet are likely to be correct and forward them to the destination. Even though this approach inevitably lets erroneous bits through, we find that it can achieve high throughput without compromising end-to-end reliability.The core component of MIXIT is a novel network code that operates on small groups of bits, called symbols. It allows the nodes to opportunistically route groups of bits to their destination with low overhead. MIXIT's network code also incorporates an end-to-end error correction component that the destination uses to correct any errors that might seep through. We have implemented MIXIT on a software radio platform running the Zigbee radio protocol. Our experiments on a 25-node indoor testbed show that MIXIT has a throughput gain of 2.8x over MORE, a state-of-the-art opportunistic routing scheme, and about 3.9x over traditional routing using the ETX metric.

Posted Content
TL;DR: This work forms a temporal notion of "distance" in the underlying social network by measuring the minimum time required for information to spread from one node to another - a concept that draws on the notion of vector-clocks from the study of distributed computing systems.
Abstract: Social networks are of interest to researchers in part because they are thought to mediate the flow of information in communities and organizations. Here we study the temporal dynamics of communication using on-line data, including e-mail communication among the faculty and staff of a large university over a two-year period. We formulate a temporal notion of "distance" in the underlying social network by measuring the minimum time required for information to spread from one node to another -- a concept that draws on the notion of vector-clocks from the study of distributed computing systems. We find that such temporal measures provide structural insights that are not apparent from analyses of the pure social network topology. In particular, we define the network backbone to be the subgraph consisting of edges on which information has the potential to flow the quickest. We find that the backbone is a sparse graph with a concentration of both highly embedded edges and long-range bridges -- a finding that sheds new light on the relationship between tie strength and connectivity in social networks.

Proceedings ArticleDOI
24 Aug 2008
TL;DR: In this article, the authors study the temporal dynamics of communication using on-line data, including e-mail communication among the faculty and staff of a large university over a two-year period.
Abstract: Social networks are of interest to researchers in part because they are thought to mediate the flow of information in communities and organizations. Here we study the temporal dynamics of communication using on-line data, including e-mail communication among the faculty and staff of a large university over a two-year period. We formulate a temporal notion of "distance" in the underlying social network by measuring the minimum time required for information to spread from one node to another - a concept that draws on the notion of vector-clocks from the study of distributed computing systems. We find that such temporal measures provide structural insights that are not apparent from analyses of the pure social network topology. In particular, we define the network backbone to be the subgraph consisting of edges on which information has the potential to flow the quickest. We find that the backbone is a sparse graph with a concentration of both highly embedded edges and long-range bridges - a finding that sheds new light on the relationship between tie strength and connectivity in social networks.

Journal ArticleDOI
01 Jul 2008
TL;DR: A range-free anchor-based localization algorithm for mobile wireless sensor networks that builds upon the Monte Carlo localization algorithm is proposed that focuses on improving the localization accuracy and efficiency by making better use of the information a sensor node gathers and by drawing the necessary location samples faster.
Abstract: Localization is crucial to many applications in wireless sensor networks. In this article, we propose a range-free anchor-based localization algorithm for mobile wireless sensor networks that builds upon the Monte Carlo localization algorithm. We concentrate on improving the localization accuracy and efficiency by making better use of the information a sensor node gathers and by drawing the necessary location samples faster. To do so, we constrain the area from which samples are drawn by building a box that covers the region where anchors' radio ranges overlap. This box is the region of the deployment area where the sensor node is localized. Simulation results show that localization accuracy is improved by a minimum of 4% and by a maximum of 73% (average 30%), for varying node speeds when considering nodes with knowledge of at least three anchors. The coverage is also strongly affected by speed and its improvement ranges from 3% to 55% (average 22%). Finally, the processing time is reduced by 93% for a similar localization accuracy.

Proceedings ArticleDOI
16 Jun 2008
TL;DR: This paper proposes an optimal buffer management policy based on global knowledge about the network that outperforms existing ones in terms of both average delivery rate and delivery delay and introduces a distributed algorithm that uses statistical learning to approximate the global knowledge required by the the optimal algorithm, in practice.
Abstract: Delay Tolerant Networks are wireless networks where disconnections may occur frequently due to propagation phenomena, node mobility, and power outages. Propagation delays may also be long due to the operational environment (e.g. deep space, underwater). In order to achieve data delivery in such challenging networking environments, researchers have proposed the use of store-carry-and-forward protocols: there, a node may store a message in its buffer and carry it along for long periods of time, until an appropriate forwarding opportunity arises. Additionally, multiple message replicas are often propagated to increase delivery probability. This combination of long-term storage and replication imposes a high storage overhead on untethered nodes (e.g. handhelds). Thus, efficient buffer management policies are necessary to decide which messages should be discarded, when node buffers are operated close to their capacity. In this paper, we propose efficient buffer management policies for delay tolerant networks. We show that traditional buffer management policies like drop-tail or drop-front fail to consider all relevant information in this context and are, thus, sub-optimal. Using the theory of encounter-based message dissemination, we propose an optimal buffer management policy based on global knowledge about the network. Our policy can be tuned either to minimize the average delivery delay or to maximize the average delivery rate. Finally, we introduce a distributed algorithm that uses statistical learning to approximate the global knowledge required by the the optimal algorithm, in practice. Using simulations based on a synthetic mobility model and real mobility traces, we show that our buffer management policy based on statistical learning successfully approximates the performance of the optimal policy in all considered scenarios. At the same time, our policy outperforms existing ones in terms of both average delivery rate and delivery delay.

Patent
27 Aug 2008
TL;DR: In this paper, a method for managing storage and access to data files stored in a storage delivery network comprising a plurality of geographically distributed storage nodes is presented, where the user is associated with a SLA containing one or more policies governing handling of file requests from the user.
Abstract: A method for managing storage and access to data files stored in a storage delivery network comprising a plurality of geographically distributed storage nodes, the method including: receiving a file request from a user, wherein the user is associated with a service level agreement (SLA) containing one or more policies governing handling of file requests from the user; determining if the SLA dictates redirecting the file request to a predetermined storage node; if the SLA dictates redirecting the file request to a predetermined storage node, redirecting the file request to the predetermined storage node; otherwise, identifying all storage nodes from the plurality of geographically distributed storage nodes that are not too busy by determining whether a number of current access requests being served by each storage node exceeds a predetermined threshold value; identifying a nearest storage node from among the not too busy storage nodes; and redirecting the user request to the nearest storage node.

Proceedings ArticleDOI
22 Apr 2008
TL;DR: This paper describes a systematic approach to building micro-solar power subsystems for wireless sensor network nodes that composes models of the basic pieces - solar panels, regulators, energy storage elements, and application loads to appropriately select and size the components.
Abstract: This paper describes a systematic approach to building micro-solar power subsystems for wireless sensor network nodes. Our approach composes models of the basic pieces - solar panels, regulators, energy storage elements, and application loads - to appropriately select and size the components. We demonstrate our approach in the context of a microclimate monitoring project through the design of the node, micro-solar subsystem, and network, which is deployed in a challenging, deep forest setting. We evaluate our deployment by analyzing the effects of the range of solar profiles experienced across the network.

Patent
17 Jul 2008
TL;DR: In this paper, a transit vehicle lighting system has a plurality of LED-based lighting fixtures for providing interior illumination, and a master node is connected to the slave nodes by a combined power/communication bus in a daisy chain fashion.
Abstract: A transit vehicle lighting system has a plurality of LED-based lighting fixtures for providing interior illumination. A control network comprises a plurality of slave nodes for controlling the LED-based lighting fixtures, and a master node for controlling the slave nodes. The master node may be connected to the slave nodes by a combined power/communication bus in a daisy chain fashion. The slave node may include a power regulator and a controller for providing a target current command to the power regulator, and may adjust the target current based upon temperature measurements or a recorded age of the LEDs. An optical sensor may provide automatic dimming. A reduced number of LEDs may be used in an emergency mode. The lighting fixture may include a ceiling panel fixture and a riser panel attachable by way of a hinge mechanism.

Patent
Aleksandar Damnjanovic1
05 Feb 2008
TL;DR: In this paper, a data traffic responsive battery-saving approach for a wireless user equipment (UE) device such as an data packet capable cellphone incorporates flexible discontinuous transmission and reception (DTX-DRX) when in Long Term Evolution (LTE) active mode as dictated by an evolved base node (eNode B).
Abstract: A data traffic responsive battery-saving approach for a wireless user equipment (UE) device such as an data packet capable cellphone incorporates flexible discontinuous transmission and reception (DTX-DRX) when in Long Term Evolution (LTE) active mode as dictated by an evolved radio access network (RAN) such as an evolved base node (eNode B). A UE device requests are made on unsynchronized random access channel (RACH). Lengthening a duration of DRX and reducing requirements for synchronization uplink transmissions results in power savings of up to 75%, as well as creating opportunities for reducing interference and for allocating additional time slots for data. This power savings is compatible with other downlink scheduling proposals, with control channel-less Voice-over-IP (VoIP), and need not target those UE devices in bad radio conditions. Legacy UE devices that can interact with the eNode B by being capable of radio resource control (RRC) signaling continue to be compatible.

Proceedings ArticleDOI
Hyunwoo Chun1, Haewoon Kwak1, Young-Ho Eom1, Yong-Yeol Ahn, Sue Moon1, Hawoong Jeong1 
20 Oct 2008
TL;DR: The first attempt to compare the explicit friend relationship network and implicit activity network is compared and it is reported that the in-degree and out-degree distributions are close to each other and the social interaction through the guestbook is highly reciprocated.
Abstract: Online social networking services are among the most popular Internet services according to Alexa.com and have become a key feature in many Internet services. Users interact through various features of online social networking services: making friend relationships, sharing their photos, and writing comments. These friend relationships are expected to become a key to many other features in web services, such as recommendation engines, security measures, online search, and personalization issues. However, we have very limited knowledge on how much interaction actually takes place over friend relationships declared online. A friend relationship only marks the beginning of online interaction.Does the interaction between users follow the declaration of friend relationship? Does a user interact evenly or lopsidedly with friends? We venture to answer these questions in this work. We construct a network from comments written in guestbooks. A node represents a user and a directed edge a comments from a user to another. We call this network an activity network. Previous work on activity networks include phone-call networks [34, 35] and MSN messenger networks [27]. To our best knowledge, this is the first attempt to compare the explicit friend relationship network and implicit activity network.We have analyzed structural characteristics of the activity network and compared them with the friends network. Though the activity network is weighted and directed, its structure is similar to the friend relationship network. We report that the in-degree and out-degree distributions are close to each other and the social interaction through the guestbook is highly reciprocated. When we consider only those links in the activity network that are reciprocated, the degree correlation distribution exhibits much more pronounced assortativity than the friends network and places it close to known social networks. The k-core analysis gives yet another corroborating evidence that the friends network deviates from the known social network and has an unusually large number of highly connected cores.We have delved into the weighted and directed nature of the activity network, and investigated the reciprocity, disparity, and network motifs. We also have observed that peer pressure to stay active online stops building up beyond a certain number of friends.The activity network has shown topological characteristics similar to the friends network, but thanks to its directed and weighted nature, it has allowed us more in-depth analysis of user interaction.