scispace - formally typeset
Search or ask a question

Showing papers on "Particle swarm optimization published in 2010"


01 Jan 2010

6,571 citations


Posted Content
TL;DR: The Bat Algorithm as mentioned in this paper is based on the echolocation behavior of bats and combines the advantages of existing algorithms into the new bat algorithm to solve many tough optimization problems.
Abstract: Metaheuristic algorithms such as particle swarm optimization, firefly algorithm and harmony search are now becoming powerful methods for solving many tough optimization problems. In this paper, we propose a new metaheuristic method, the Bat Algorithm, based on the echolocation behaviour of bats. We also intend to combine the advantages of existing algorithms into the new bat algorithm. After a detailed formulation and explanation of its implementation, we will then compare the proposed algorithm with other existing algorithms, including genetic algorithms and particle swarm optimization. Simulations show that the proposed algorithm seems much superior to other algorithms, and further studies are also discussed.

3,528 citations


Book ChapterDOI
23 Apr 2010
TL;DR: The Bat Algorithm as mentioned in this paper is based on the echolocation behavior of bats and combines the advantages of existing algorithms into the new bat algorithm to solve many tough optimization problems.
Abstract: Metaheuristic algorithms such as particle swarm optimization, firefly algorithm and harmony search are now becoming powerful methods for solving many tough optimization problems. In this paper, we propose a new metaheuristic method, the Bat Algorithm, based on the echolocation behaviour of bats. We also intend to combine the advantages of existing algorithms into the new bat algorithm. After a detailed formulation and explanation of its implementation, we will then compare the proposed algorithm with other existing algorithms, including genetic algorithms and particle swarm optimization. Simulations show that the proposed algorithm seems much superior to other algorithms, and further studies are also discussed.

3,162 citations


Journal ArticleDOI
TL;DR: A method for crystal structure prediction from ``scratch'' through particle-swarm optimization (PSO) algorithm within the evolutionary scheme and illustrates the promise of PSO as a major technique on crystal structure determination.
Abstract: We have developed a method for crystal structure prediction from ``scratch'' through particle-swarm optimization (PSO) algorithm within the evolutionary scheme. PSO technique is different with the genetic algorithm and has apparently avoided the use of evolution operators (e.g., crossover and mutation). The approach is based on an efficient global minimization of free-energy surfaces merging total-energy calculations via PSO technique and requires only chemical compositions for a given compound to predict stable or metastable structures at given external conditions (e.g., pressure). A particularly devised geometrical structure parameter which allows the elimination of similar structures during structure evolution was implemented to enhance the structure search efficiency. The application of designed variable unit-cell size technique has greatly reduced the computational cost. Moreover, the symmetry constraint imposed in the structure generation enables the realization of diverse structures, leads to significantly reduced search space and optimization variables, and thus fastens the global structure convergence. The PSO algorithm has been successfully applied to the prediction of many known systems (e.g., elemental, binary, and ternary compounds) with various chemical-bonding environments (e.g., metallic, ionic, and covalent bonding). The high success rate demonstrates the reliability of this methodology and illustrates the promise of PSO as a major technique on crystal structure determination.

1,963 citations


Journal ArticleDOI
TL;DR: This paper presents a more extensive comparison study using some standard test functions and newly designed stochastic test functions to apply the CS algorithm to solve engineering design optimisation problems, including the design of springs and welded beam structures.
Abstract: A new metaheuristic optimisation algorithm, called cuckoo search (CS), was developed recently by Yang and Deb (2009). This paper presents a more extensive comparison study using some standard test functions and newly designed stochastic test functions. We then apply the CS algorithm to solve engineering design optimisation problems, including the design of springs and welded beam structures. The optimal solutions obtained by CS are far better than the best solutions obtained by an efficient particle swarm optimiser. We will discuss the unique search features used in CS and the implications for further research.

1,339 citations


Journal ArticleDOI
TL;DR: An improved ABC algorithm called gbest-guided ABC (GABC) algorithm is proposed by incorporating the information of global best (gbest) solution into the solution search equation to improve the exploitation of ABC algorithm.

1,105 citations


Book ChapterDOI
07 Mar 2010
TL;DR: Numerical studies and results suggest that the proposed Levy-flight firefly algorithm is superior to existing metaheuristic algorithms.
Abstract: Nature-inspired algorithms such as Particle Swarm Optimization and Firefly Algorithm are among the most powerful algorithms for optimization. In this paper, we intend to formulate a new metaheuristic algorithm by combining Levy flights with the search strategy via the Firefly Algorithm. Numerical studies and results suggest that the proposed Levy-flight firefly algorithm is superior to existing metaheuristic algorithms. Finally implications for further research and wider applications will be discussed.

928 citations


Book ChapterDOI
12 Jun 2010
TL;DR: It turns out that the proposed Fireworks Algorithm clearly outperforms the two variants of the PSOs in both convergence speed and global solution accuracy.
Abstract: Inspired by observing fireworks explosion, a novel swarm intelligence algorithm, called Fireworks Algorithm (FA), is proposed for global optimization of complex functions In the proposed FA, two types of explosion (search) processes are employed, and the mechanisms for keeping diversity of sparks are also well designed In order to demonstrate the validation of the FA, a number of experiments were conducted on nine benchmark test functions to compare the FA with two variants of particle swarm optimization (PSO) algorithms, namely Standard PSO and Clonal PSO It turns out from the results that the proposed FA clearly outperforms the two variants of the PSOs in both convergence speed and global solution accuracy.

857 citations


Proceedings ArticleDOI
20 Apr 2010
TL;DR: This paper presents a particle swarm optimization (PSO) based heuristic to schedule applications to cloud resources that takes into account both computation cost and data transmission cost, and shows that PSO can achieve as much as 3 times cost savings as compared to BRS.
Abstract: Cloud computing environments facilitate applications by providing virtualized resources that can be provisioned dynamically. However, users are charged on a pay-per-use basis. User applications may incur large data retrieval and execution costs when they are scheduled taking into account only the ‘execution time’. In addition to optimizing execution time, the cost arising from data transfers between resources as well as execution costs must also be taken into account. In this paper, we present a particle swarm optimization (PSO) based heuristic to schedule applications to cloud resources that takes into account both computation cost and data transmission cost. We experiment with a workflow application by varying its computation and communication costs. We compare the cost savings when using PSO and existing ‘Best Resource Selection’ (BRS) algorithm. Our results show that PSO can achieve: a) as much as 3 times cost savings as compared to BRS, and b) good distribution of workload onto resources.

837 citations


Journal ArticleDOI
TL;DR: The main idea of the principle of PSO is presented; the advantages and the shortcomings are summarized; and some kinds of improved versions ofPSO and research situation are presented.
Abstract: Particle swarm optimization is a heuristic global optimization method and also an optimization algorithm, which is based on swarm intelligence. It comes from the research on the bird and fish flock movement behavior. The algorithm is widely used and rapidly developed for its easy implementation and few particles required to be tuned. The main idea of the principle of PSO is presented; the advantages and the shortcomings are summarized. At last this paper presents some kinds of improved versions of PSO and research situation, and the future research issues are also given.

699 citations


Journal ArticleDOI
01 Mar 2010
TL;DR: A novel hybrid algorithm named PSO-DE is proposed, which integrates particle swarm optimization (PSO) with differential evolution (DE) to solve constrained numerical and engineering optimization problems.
Abstract: We propose a novel hybrid algorithm named PSO-DE, which integrates particle swarm optimization (PSO) with differential evolution (DE) to solve constrained numerical and engineering optimization problems. Traditional PSO is easy to fall into stagnation when no particle discovers a position that is better than its previous best position for several generations. DE is incorporated into update the previous best positions of particles to force PSO jump out of stagnation, because of its strong searching ability. The hybrid algorithm speeds up the convergence and improves the algorithm's performance. We test the presented method on 11 well-known benchmark test functions and five engineering optimization functions. Comparisons show that PSO-DE outperforms or performs similarly to seven state-of-the-art approaches in terms of the quality of the resulting solutions.

Proceedings ArticleDOI
01 Dec 2010
TL;DR: A new hybrid population-based algorithm (PSOGSA) is proposed with the combination of Particle Swarm Optimization and Gravitational Search Algorithm to synthesize both algorithms' strength.
Abstract: In this paper, a new hybrid population-based algorithm (PSOGSA) is proposed with the combination of Particle Swarm Optimization (PSO) and Gravitational Search Algorithm (GSA) The main idea is to integrate the ability of exploitation in PSO with the ability of exploration in GSA to synthesize both algorithms' strength Some benchmark test functions are used to compare the hybrid algorithm with both the standard PSO and GSA algorithms in evolving best solution The results show the hybrid algorithm possesses a better capability to escape from local optimums with faster convergence than the standard PSO and GSA

Journal ArticleDOI
TL;DR: An improved PSO framework employing chaotic sequences combined with the conventional linearly decreasing inertia weights and adopting a crossover operation scheme to increase both exploration and exploitation capability of the PSO is proposed.
Abstract: This paper presents an efficient approach for solving economic dispatch (ED) problems with nonconvex cost functions using an improved particle swarm optimization (IPSO). Although the particle swarm optimization (PSO) approaches have several advantages suitable to heavily constrained nonconvex optimization problems, they still can have the drawbacks such as local optimal trapping due to premature convergence (i.e., exploration problem), insufficient capability to find nearby extreme points (i.e., exploitation problem), and lack of efficient mechanism to treat the constraints (i.e., constraint handling problem). This paper proposes an improved PSO framework employing chaotic sequences combined with the conventional linearly decreasing inertia weights and adopting a crossover operation scheme to increase both exploration and exploitation capability of the PSO. In addition, an effective constraint handling framework is employed for considering equality and inequality constraints. The proposed IPSO is applied to three different nonconvex ED problems with valve-point effects, prohibited operating zones with ramp rate limits as well as transmission network losses, and multi-fuels with valve-point effects. Additionally, it is applied to the large-scale power system of Korea. Also, the results are compared with those of the state-of-the-art methods.

Book
31 Jan 2010
TL;DR: Particle Swarm Optimization and Intelligence: Advances and Applications examines modern intelligent optimization algorithms proven as very efficient in applications from various scientific and technological fields.
Abstract: Particle Swarm Optimization and Intelligence: Advances and Applications examines modern intelligent optimization algorithms proven as very efficient in applications from various scientific and technological fields. Providing distinguished and unique research, this innovative publication offers a compendium of leading field experiences as well as theoretical analyses and complementary techniques useful to academicians and practitioners.

Journal ArticleDOI
TL;DR: In this paper, a biogeography-based optimization (BBO) algorithm is proposed to solve both convex and non-convex economic load dispatch (ELD) problems of thermal plants.
Abstract: This paper presents a biogeography-based optimization (BBO) algorithm to solve both convex and non-convex economic load dispatch (ELD) problems of thermal plants. The proposed methodology can take care of economic dispatch problems involving constraints such as transmission losses, ramp rate limits, valve point loading, multi-fuel options and prohibited operating zones. Biogeography deals with the geographical distribution of biological species. Mathematical models of biogeography describe how a species arises, migrates from one habitat to another and gets wiped out. BBO has some features that are in common with other biology-based optimization methods, like genetic algorithms (GAs) and particle swarm optimization (PSO). This algorithm searches for the global optimum mainly through two steps: migration and mutation. The effectiveness of the proposed algorithm has been verified on four different test systems, both small and large, involving varying degree of complexity. Compared with the other existing techniques, the proposed algorithm has been found to perform better in a number of cases. Considering the quality of the solution obtained, this method seems to be a promising alternative approach for solving the ELD problems in practical power system.

Journal ArticleDOI
01 Jan 2010
TL;DR: A new hybrid evolutionary algorithm to solve nonlinear partitional clustering problem is presented, called FAPSO-ACO-K, which can find better cluster partition and is better than other algorithms such as PSO, ACO, simulated annealing (SA), combination of PSO and SA (PSO-SA).
Abstract: Clustering is a popular data analysis and data mining technique. A popular technique for clustering is based on k-means such that the data is partitioned into K clusters. However, the k-means algorithm highly depends on the initial state and converges to local optimum solution. This paper presents a new hybrid evolutionary algorithm to solve nonlinear partitional clustering problem. The proposed hybrid evolutionary algorithm is the combination of FAPSO (fuzzy adaptive particle swarm optimization), ACO (ant colony optimization) and k-means algorithms, called FAPSO-ACO-K, which can find better cluster partition. The performance of the proposed algorithm is evaluated through several benchmark data sets. The simulation results show that the performance of the proposed algorithm is better than other algorithms such as PSO, ACO, simulated annealing (SA), combination of PSO and SA (PSO-SA), combination of ACO and SA (ACO-SA), combination of PSO and ACO (PSO-ACO), genetic algorithm (GA), Tabu search (TS), honey bee mating optimization (HBMO) and k-means for partitional clustering problem.

Journal ArticleDOI
01 Mar 2010
TL;DR: It is found that not only the PSO method and its simplified variant have comparable performance for optimizing a number of Artificial Neural Network problems, but also the simplified variant appears to offer a small improvement in some cases.
Abstract: The general purpose optimization method known as Particle Swarm Optimization (PSO) has received much attention in past years, with many attempts to find the variant that performs best on a wide variety of optimization problems. The focus of past research has been with making the PSO method more complex, as this is frequently believed to increase its adaptability to other optimization problems. This study takes the opposite approach and simplifies the PSO method. To compare the efficacy of the original PSO and the simplified variant here, an easy technique is presented for efficiently tuning their behavioural parameters. The technique works by employing an overlaid meta-optimizer, which is capable of simultaneously tuning parameters with regard to multiple optimization problems, whereas previous approaches to meta-optimization have tuned behavioural parameters to work well on just a single optimization problem. It is then found that not only the PSO method and its simplified variant have comparable performance for optimizing a number of Artificial Neural Network problems, but also the simplified variant appears to offer a small improvement in some cases.

Journal ArticleDOI
TL;DR: Experimental results suggest that PSO algorithms using the ring topology are able to provide superior and more consistent performance over some existing PSO niching algorithms that require nICHing parameters.
Abstract: Niching is an important technique for multimodal optimization. Most existing niching methods require specification of certain niching parameters in order to perform well. These niching parameters, often used to inform a niching algorithm how far apart between two closest optima or the number of optima in the search space, are typically difficult to set as they are problem dependent. This paper describes a simple yet effective niching algorithm, a particle swarm optimization (PSO) algorithm using a ring neighborhood topology, which does not require any niching parameters. A PSO algorithm using the ring topology can operate as a niching algorithm by using individual particles' local memories to form a stable network retaining the best positions found so far, while these particles explore the search space more broadly. Given a reasonably large population uniformly distributed in the search space, PSO algorithms using the ring topology are able to form stable niches across different local neighborhoods, eventually locating multiple global/local optima. The complexity of these niching algorithms is only O(N), where N is the population size. Experimental results suggest that PSO algorithms using the ring topology are able to provide superior and more consistent performance over some existing PSO niching algorithms that require niching parameters.

Journal ArticleDOI
TL;DR: This work presents novel quantum-behaved PSO (QPSO) approaches using mutation operator with Gaussian probability distribution employed in well-studied continuous optimization problems of engineering design and indicates that Gaussian QPSO approaches handle such problems efficiently in terms of precision and convergence.
Abstract: Particle swarm optimization (PSO) is a population-based swarm intelligence algorithm that shares many similarities with evolutionary computation techniques. However, the PSO is driven by the simulation of a social psychological metaphor motivated by collective behaviors of bird and other social organisms instead of the survival of the fittest individual. Inspired by the classical PSO method and quantum mechanics theories, this work presents novel quantum-behaved PSO (QPSO) approaches using mutation operator with Gaussian probability distribution. The application of Gaussian mutation operator instead of random sequences in QPSO is a powerful strategy to improve the QPSO performance in preventing premature convergence to local optima. In this paper, new combinations of QPSO and Gaussian probability distribution are employed in well-studied continuous optimization problems of engineering design. Two case studies are described and evaluated in this work. Our results indicate that Gaussian QPSO approaches handle such problems efficiently in terms of precision and convergence and, in most cases, they outperform the results presented in the literature.

Journal ArticleDOI
TL;DR: It is shown that, on average, PSO outperforms GA in all cases considered, though the relative advantages of PSO vary from case to case.
Abstract: Determining the optimum type and location of new wells is an essential component in the efficient development of oil and gas fields. The optimization problem is, however, demanding due to the potentially high dimension of the search space and the computational requirements associated with function evaluations, which, in this case, entail full reservoir simulations. In this paper, the particle swarm optimization (PSO) algorithm is applied for the determination of optimal well type and location. The PSO algorithm is a stochastic procedure that uses a population of solutions, called particles, which move in the search space. Particle positions are updated iteratively according to particle fitness (objective function value) and position relative to other particles. The general PSO procedure is first discussed, and then the particular variant implemented for well optimization is described. Four example cases are considered. These involve vertical, deviated, and dual-lateral wells and optimization over single and multiple reservoir realizations. For each case, both the PSO algorithm and the widely used genetic algorithm (GA) are applied to maximize net present value. Multiple runs of both algorithms are performed and the results are averaged in order to achieve meaningful comparisons. It is shown that, on average, PSO outperforms GA in all cases considered, though the relative advantages of PSO vary from case to case. Taken in total, these findings are very promising and demonstrate the applicability of PSO for this challenging problem.

Journal ArticleDOI
TL;DR: A modified discrete particle swarm optimization (PSO) algorithm is developed which dynamically accounts for the relevance and dependence of the features included the feature subset in an adaptive feature selection procedure.

Journal ArticleDOI
TL;DR: A novel set-based PSO (S-PSO) method for the solutions of some combinatorial optimization problems (COPs) in discrete space is presented and tested on two famous COPs: the traveling salesman problem and the multidimensional knapsack problem.
Abstract: Particle swarm optimization (PSO) is predominately used to find solutions for continuous optimization problems. As the operators of PSO are originally designed in an n-dimensional continuous space, the advancement of using PSO to find solutions in a discrete space is at a slow pace. In this paper, a novel set-based PSO (S-PSO) method for the solutions of some combinatorial optimization problems (COPs) in discrete space is presented. The proposed S-PSO features the following characteristics. First, it is based on using a set-based representation scheme that enables S-PSO to characterize the discrete search space of COPs. Second, the candidate solution and velocity are defined as a crisp set, and a set with possibilities, respectively. All arithmetic operators in the velocity and position updating rules used in the original PSO are replaced by the operators and procedures defined on crisp sets, and sets with possibilities in S-PSO. The S-PSO method can thus follow a similar structure to the original PSO for searching in a discrete space. Based on the proposed S-PSO method, most of the existing PSO variants, such as the global version PSO, the local version PSO with different topologies, and the comprehensive learning PSO (CLPSO), can be extended to their corresponding discrete versions. These discrete PSO versions based on S-PSO are tested on two famous COPs: the traveling salesman problem and the multidimensional knapsack problem. Experimental results show that the discrete version of the CLPSO algorithm based on S-PSO is promising.

Journal Article
TL;DR: This paper proposes a new metaheuristic method, the Bat Algo-rithm, based on the echo location behaviour of bats, and compares it with other existing algorithms, including genetic algorithms and particle swarm optimization.
Abstract: Metaheuristic algorithms such as particle swarm optimization, mremy algorithm andharmony search are now becoming powerful methods for solving many tough optimization problems. In this paper, we propose a new metaheuristic method, the Bat Algo-rithm, based on the echo location behaviour of bats. We also intend to combine theadvantages of existing algorithms into the new bat algorithm. After a detailed formu-lation and explanation of its implementation, we will then compare the proposed algo-rithm with other existing algorithms, including genetic algorithms and particle swarm optimization. Simulations show that the proposed algorithm seems much superior to other algorithms, and further studies are also discussed.

Journal ArticleDOI
TL;DR: The experimental results show the efficiency of the clustering PSO for locating and tracking multiple optima in dynamic environments in comparison with other particle swarm optimization models based on the multiswarm method.
Abstract: In the real world, many optimization problems are dynamic. This requires an optimization algorithm to not only find the global optimal solution under a specific environment but also to track the trajectory of the changing optima over dynamic environments. To address this requirement, this paper investigates a clustering particle swarm optimizer (PSO) for dynamic optimization problems. This algorithm employs a hierarchical clustering method to locate and track multiple peaks. A fast local search method is also introduced to search optimal solutions in a promising subregion found by the clustering method. Experimental study is conducted based on the moving peaks benchmark to test the performance of the clustering PSO in comparison with several state-of-the-art algorithms from the literature. The experimental results show the efficiency of the clustering PSO for locating and tracking multiple optima in dynamic environments in comparison with other particle swarm optimization models based on the multiswarm method.

Journal ArticleDOI
TL;DR: Particle swarm optimization (PSO) is proposed to balance between cost and emission reductions for UC with V2G, and Balanced hybrid PSO optimizes the number of gridable vehicles of V1G in the constrained parking lots.

Journal ArticleDOI
TL;DR: In this article, a quantum-inspired particle swarm optimization (QPSO) is proposed, which has stronger search ability and quicker convergence speed, not only because of the introduction of quantum computing theory, but also due to two special implementations: self-adaptive probability selection and chaotic sequences mutation.
Abstract: Economic load dispatch (ELD) is an important topic in the operation of power plants which can help to build up effective generating management plans. The ELD problem has nonsmooth cost function with equality and inequality constraints which make it difficult to be effectively solved. Different heuristic optimization methods have been proposed to solve this problem in previous study. In this paper, quantum-inspired particle swarm optimization (QPSO) is proposed, which has stronger search ability and quicker convergence speed, not only because of the introduction of quantum computing theory, but also due to two special implementations: self-adaptive probability selection and chaotic sequences mutation. The proposed approach is tested with five standard benchmark functions and three power system cases consisting of 3, 13, and 40 thermal units. Comparisons with similar approaches including the evolutionary programming (EP), genetic algorithm (GA), immune algorithm (IA), and other versions of particle swarm optimization (PSO) are given. The promising results illustrate the efficiency of the proposed method and show that it could be used as a reliable tool for solving ELD problems.

Journal ArticleDOI
TL;DR: The proposed approach can be applied to solve the harmonic-elimination problem with nonequal dc sources in a simpler manner, even when the number of switching angles is increased and the determination of these angles using the resultant theory approach is not possible.
Abstract: In this paper, the elimination of harmonics in a cascade multilevel inverter by considering the nonequality of separated dc sources by using particle swarm optimization is presented. Solving a nonlinear transcendental equation set describing the harmonic-elimination problem with nonequal dc sources reaches the limitation of contemporary computer algebra software tools using the resultant method. The proposed approach in this paper can be applied to solve the problem in a simpler manner, even when the number of switching angles is increased and the determination of these angles using the resultant theory approach is not possible. Theoretical results are verified by experiments and simulations for an 11-level H-bridge inverter. Results show that the proposed method does effectively eliminate a great number of specific harmonics, and the output voltage is resulted in low total harmonic distortion.

Journal ArticleDOI
TL;DR: In this paper, the energy flow analysis of the conventional separation production (SP) system and the redundant building cooling heating and power (BCHP) system is presented, and an objective function to simultaneously measure the energetic, economical and environmental benefits achieved by BCHP system in comparison to SP system is constructed and maximized.

Journal ArticleDOI
TL;DR: The minimization of the power losses in time-modulated arrays is addressed by means of a suitable strategy based on particle swarm optimization, aimed at reducing the amount of wasted power, analytically computed through a very effective closed-form relationship.
Abstract: The minimization of the power losses in time-modulated arrays is addressed by means of a suitable strategy based on particle swarm optimization. By properly modifying the modulation sequence, the method is aimed at reducing the amount of wasted power, analytically computed through a very effective closed-form relationship, while constraining the radiation pattern at the carrier frequency below a fixed sidelobe level. Representative results are reported and compared with previously published solutions to assess the effectiveness of the proposed approach.

Journal ArticleDOI
TL;DR: An improved PSO framework employing chaotic sequences combined with the conventional linearly decreasing inertia weights and adopting a crossover operation scheme to increase both exploration and exploitation capability of the PSO is proposed.
Abstract: In this paper, the authors proposed a heuristic constraint-handing technique for considering equality and inequality constraints of economic dispatch (ED) problems. The proposed constraint-handling technique is able to improve the solution quality even if it might spend more CPU time than any penalty factor approaches.