scispace - formally typeset
Search or ask a question

Showing papers on "Routing protocol published in 2005"


Journal ArticleDOI
TL;DR: This paper presents a detailed study on recent advances and open research issues in WMNs, followed by discussing the critical factors influencing protocol design and exploring the state-of-the-art protocols for WMNs.

4,205 citations


Journal ArticleDOI
01 May 2005
TL;DR: The three main categories explored in this paper are data-centric, hierarchical and location-based; each routing protocol is described and discussed under the appropriate category.
Abstract: Recent advances in wireless sensor networks have led to many new protocols specifically designed for sensor networks where energy awareness is an essential consideration. Most of the attention, however, has been given to the routing protocols since they might differ depending on the application and network architecture. This paper surveys recent routing protocols for sensor networks and presents a classification for the various approaches pursued. The three main categories explored in this paper are data-centric, hierarchical and location-based. Each routing protocol is described and discussed under the appropriate category. Moreover, protocols using contemporary methodologies such as network flow and quality of service modeling are also discussed. The paper concludes with open research issues. � 2003 Elsevier B.V. All rights reserved.

3,573 citations


Book
27 May 2005
TL;DR: This book discusses the design principles for wireless sensor networks, and the many faces of forwarding and routing, and some of the approaches to combining hierarchical topologies and power control used in these networks.
Abstract: Preface. List of Abbreviations. A guide to the book. 1. Introduction. 1.1 The vision of Ambient Intelligence. 1.2 Application examples. 1.3 Types of applications. 1.4 Challenges for WSNs. 1.5 Why are sensor networks different? 1.6 Enabling technologies. PART I: ARCHITECTURES. 2. Single node architecture. 2.1 Hardware components. 2.2 Energy consumption of sensor nodes. 2.3 Operating systems and execution environments. 2.4 Some examples of sensor nodes. 2.5 Conclusion. 3. Network architecture. 3.1 Sensor network scenarios. 3.2 Optimization goals & figures of merit. 3.3 Design principles for WSNs. 3.4 Service interfaces of WSNs. 3.5 Gateway concepts. 3.6 Conclusion. PART II: COMMUNICATION PROTOCOLS. 4. Physical Layer. 4.1 Introduction. 4.2 Wireless channel and communication fundamentals. 4.3 Physical layer & transceiver design considerations in WSNs. 4.4 Further reading. 5. MAC Protocols 133 5.1 Fundamentals of (wireless) MAC protocols. 5.2 Low duty cycle protocols and wakeup concepts. 5.3 Contention-based protocols. 5.4 Schedule-based protocols. 5.5 The IEEE 802.15.4 MAC protocol. 5.6 How about IEEE 802.11 and Bluetooth? 5.7 Further reading. 5.8 Conclusion. 6. Link Layer Protocols. 6.1 Fundamentals: Tasks and requirements. 6.2 Error control. 6.3 Framing. 6.4 Link management. 6.5 Summary. 7. Naming and Addressing. 7.1 Fundamentals. 7.2 Address and name management in wireless sensor networks. 7.3 Assignment of MAC addresses. 7.4 Distributed assignment of locally unique addresses. 7.5 Content-based and geographic addressing. 7.6 Summary. 8. Time Synchronization. 8.1 Introduction to the time synchronization problem. 8.2 Protocols based on sender/receiver synchronization. 8.3 Protocols based on receiver/receiver synchronization. 8.4 Further reading. 9. Localization and Positioning. 9.1 Properties of positioning. 9.2 Possible approaches. 9.3 Mathematical basics for the lateration problem. 9.4 Single-hop localization. 9.5 Positioning in multi-hop environments. 9.6 Impact of anchor placement. 9.7 Further reading. 9.8 Conclusion. 10. Topology control 295 10.1 Motivation and basic ideas. 10.2 Flat network topologies. 10.3 Hierarchical networks by dominating sets. 10.4 Hierarchical networks by clustering. 10.5 Combining hierarchical topologies and power control. 10.6 Adaptive node activity. 10.7 Conclusions. 11. Routing protocols. 11.1 The many faces of forwarding and routing. 11.2 Gossiping and agent-based unicast forwarding. 11.3 Energy-efficient unicast. 11.4 Broadcast and multicast. 11.5 Geographic routing. 11.6 Mobile nodes. 11.7 Conclusions. 12. Data-centric and content-based networking 395. 12.1 Introduction. 12.2 Data-centric routing. 12.3 Data aggregation. 12.4 Data-centric storage. 12.5 Conclusions. 13. Transport Layer and Quality of Service. 13.1 The transport layer and QoS in wireless sensor networks. 13.2 Coverage and deployment. 13.3 Reliable data transport. 13.5 Block delivery. 13.6 Congestion control and rate control. 14. Advanced application support. 14.1 Advanced in-network processing. 14.2 Security. 14.3 Application-specific support. Bibliography. Index.

1,894 citations


Journal ArticleDOI
TL;DR: This paper presents attacks against routing in ad hoc networks, and the design and performance evaluation of a new secure on-demand ad hoc network routing protocol, called Ariadne, which prevents attackers or compromised nodes from tampering with uncompromising routes consisting of uncompromised nodes.
Abstract: An ad hoc network is a group of wireless mobile computers (or nodes), in which individual nodes cooperate by forwarding packets for each other to allow nodes to communicate beyond direct wireless transmission range. Prior research in ad hoc networking has generally studied the routing problem in a non-adversarial setting, assuming a trusted environment. In this paper, we present attacks against routing in ad hoc networks, and we present the design and performance evaluation of a new secure on-demand ad hoc network routing protocol, called Ariadne. Ariadne prevents attackers or compromised nodes from tampering with uncompromised routes consisting of uncompromised nodes, and also prevents many types of Denial-of-Service attacks. In addition, Ariadne is efficient, using only highly efficient symmetric cryptographic primitives.

1,230 citations


Proceedings ArticleDOI
13 Mar 2005
TL;DR: This paper suggests that the base station be mobile; in this way, the nodes located close to it change over time and the obtained improvement in terms of network lifetime is in the order of 500%.
Abstract: Although many energy efficient/conserving routing protocols have been proposed for wireless sensor networks, the concentration of data traffic towards a small number of base stations remains a major threat to the network lifetime. The main reason is that the sensor nodes located near a base station have to relay data for a large part of the network and thus deplete their batteries very quickly. The solution we propose in this paper suggests that the base station be mobile; in this way, the nodes located close to it change over time. Data collection protocols can then be optimized by taking both base station mobility and multi-hop routing into account. We first study the former, and conclude that the best mobility strategy consists in following the periphery of the network (we assume that the sensors are deployed within a circle). We then consider jointly mobility and routing algorithms in this case, and show that a better routing strategy uses a combination of round routes and short paths. We provide a detailed analytical model for each of our statements, and corroborate it with simulation results. We show that the obtained improvement in terms of network lifetime is in the order of 500%.

937 citations


Journal ArticleDOI
TL;DR: A centralized routing protocol called base-station controlled dynamic clustering protocol (BCDCP), which distributes the energy dissipation evenly among all sensor nodes to improve network lifetime and average energy savings and is compared to clustering-based schemes.
Abstract: Wireless sensor networks consist of small battery powered devices with limited energy resources. Once deployed, the small sensor nodes are usually inaccessible to the user, and thus replacement of the energy source is not feasible. Hence, energy efficiency is a key design issue that needs to be enhanced in order to improve the life span of the network. Several network layer protocols have been proposed to improve the effective lifetime of a network with a limited energy supply. In this article we propose a centralized routing protocol called base-station controlled dynamic clustering protocol (BCDCP), which distributes the energy dissipation evenly among all sensor nodes to improve network lifetime and average energy savings. The performance of BCDCP is then compared to clustering-based schemes such as low-energy adaptive clustering hierarchy (LEACH), LEACH-centralized (LEACH-C), and power-efficient gathering in sensor information systems (PEGASIS). Simulation results show that BCDCP reduces overall energy consumption and improves network lifetime over its comparatives.

922 citations


Proceedings ArticleDOI
28 Aug 2005
TL;DR: This paper evaluates the ability of a wireless mesh architecture to provide high performance Internet access while demanding little deployment planning or operational management, and the usefulness of the highly connected mesh afforded by omni-directional antennas for robustness and throughput.
Abstract: This paper evaluates the ability of a wireless mesh architecture to provide high performance Internet access while demanding little deployment planning or operational management. The architecture considered in this paper has unplanned node placement (rather than planned topology), omni-directional antennas (rather than directional links), and multi-hop routing (rather than single-hop base stations). These design decisions contribute to ease of deployment, an important requirement for community wireless networks. However, this architecture carries the risk that lack of planning might render the network's performance unusably low. For example, it might be necessary to place nodes carefully to ensure connectivity; the omni-directional antennas might provide uselessly short radio ranges; or the inefficiency of multi-hop forwarding might leave some users effectively disconnected.The paper evaluates this unplanned mesh architecture with a case study of the Roofnet 802.11b mesh network. Roofnet consists of 37 nodes spread over four square kilometers of an urban area. The network provides users with usable performance despite lack of planning: the average inter-node throughput is 627 kbits/second, even though the average route has three hops.The paper evaluates multiple aspects of the architecture: the effect of node density on connectivity and throughput; the characteristics of the links that the routing protocol elects to use; the usefulness of the highly connected mesh afforded by omni-directional antennas for robustness and throughput; and the potential performance of a single-hop network using the same nodes as Roofnet.

817 citations


Proceedings ArticleDOI
12 Dec 2005
TL;DR: An energy-efficient unequal clustering mechanism for periodical data gathering in wireless sensor networks that partitions the nodes into clusters of unequal size, and clusters closer to the base station can preserve some energy for the inter-cluster data forwarding.
Abstract: Clustering provides an effective way for prolonging the lifetime of a wireless sensor network. Current clustering algorithms usually utilize two techniques, selecting cluster heads with more residual energy and rotating cluster heads periodically, to distribute the energy consumption among nodes in each cluster and extend the network lifetime. However, they rarely consider the hot spots problem in multihop wireless sensor networks. When cluster heads cooperate with each other to forward their data to the base station, the cluster heads closer to the base station are burdened with heavy relay traffic and tend to die early, leaving areas of the network uncovered and causing network partition. To address the problem, we propose an energy-efficient unequal clustering (EEUC) mechanism for periodical data gathering in wireless sensor networks. It partitions the nodes into clusters of unequal size, and clusters closer to the base station have smaller sizes than those farther away from the base station. Thus cluster heads closer to the base station can preserve some energy for the inter-cluster data forwarding. We also propose an energy-aware multihop routing protocol for the inter-cluster communication. Simulation results show that our unequal clustering mechanism balances the energy consumption well among all sensor nodes and achieves an obvious improvement on the network lifetime

654 citations


Proceedings ArticleDOI
27 Aug 2005
TL;DR: An analysis of energy efficient routing protocols with direct communication protocol and a novel energy conscious cluster head selection algorithm for making system more reliable and efficient are presented.
Abstract: The paper presents an analysis of energy efficient routing protocols with direct communication protocol. A comparison of these protocols is made analyzing energy consumption at each node and explaining system lifetime after certain rounds. The paper also proposes a novel energy conscious cluster head selection algorithm for making system more reliable and efficient. Simulation shows that our proposed algorithm enhances the system reliability and accuracy.

646 citations


Proceedings ArticleDOI
08 May 2005
TL;DR: New traffic-analysis techniques are presented that allow adversaries with only a partial view of the network to infer which nodes are being used to relay the anonymous streams and therefore greatly reduce the anonymity provided by Tor, and it is shown that otherwise unrelated streams can be linked back to the same initiator.
Abstract: Tor is the second generation onion router supporting the anonymous transport of TCP streams over the Internet. Its low latency makes it very suitable for common tasks, such as Web browsing, but insecure against traffic-analysis attacks by a global passive adversary. We present new traffic-analysis techniques that allow adversaries with only a partial view of the network to infer which nodes are being used to relay the anonymous streams and therefore greatly reduce the anonymity provided by Tor. Furthermore, we show that otherwise unrelated streams can be linked back to the same initiator Our attack is feasible for the adversary anticipated by the Tor designers. Our theoretical attacks are backed up by experiments performed on the deployed, albeit experimental, Tor network. Our techniques should also be applicable to any low latency anonymous network. These attacks highlight the relationship between the field of traffic-analysis and more traditional computer security issues, such as covert channel analysis. Our research also highlights that the inability to directly observe network links does not prevent an attacker from performing traffic-analysis: the adversary can use the anonymising network as an oracle to infer the traffic load on remote nodes in order to perform traffic-analysis.

595 citations


Journal ArticleDOI
TL;DR: A new reliable transport scheme for WSN, the event-to-sink reliable transport (ESRT) protocol, is presented in this paper, a novel transport solution developed to achieve reliable event detection in WSN with minimum energy expenditure.
Abstract: Wireless sensor networks (WSNs) are event-based systems that rely on the collective effort of several microsensor nodes. Reliable event detection at the sink is based on collective information provided by source nodes and not on any individual report. However, conventional end-to-end reliability definitions and solutions are inapplicable in the WSN regime and would only lead to a waste of scarce sensor resources. Hence, the WSN paradigm necessitates a collective event-to-sink reliability notion rather than the traditional end-to-end notion. To the best of our knowledge, reliable transport in WSN has not been studied from this perspective before. In order to address this need, a new reliable transport scheme for WSN, the event-to-sink reliable transport (ESRT) protocol, is presented in this paper. ESRT is a novel transport solution developed to achieve reliable event detection in WSN with minimum energy expenditure. It includes a congestion control component that serves the dual purpose of achieving reliability and conserving energy. Importantly, the algorithms of ESRT mainly run on the sink, with minimal functionality required at resource constrained sensor nodes. ESRT protocol operation is determined by the current network state based on the reliability achieved and congestion condition in the network. This self-configuring nature of ESRT makes it robust to random, dynamic topology in WSN. Furthermore, ESRT can also accommodate multiple concurrent event occurrences in a wireless sensor field. Analytical performance evaluation and simulation results show that ESRT converges to the desired reliability with minimum energy expenditure, starting from any initial network state.

Proceedings ArticleDOI
02 May 2005
TL;DR: It is shown that RCP assigns routes correctly, even when the functionality is replicated and distributed, and that networks using RCP can expect comparable convergence delays to those using today's iBGP architectures.
Abstract: The routers in an Autonomous System (AS) must distribute the information they learn about how to reach external destinations. Unfortunately, today's internal Border Gateway Protocol (iBGP) architectures have serious problems: a "full mesh" iBGP configuration does not scale to large networks and "route reflection" can introduce problems such as protocol oscillations and persistent loops. Instead, we argue that a Routing Control Platform (RCP) should collect information about external destinations and internal topology and select the BGP routes for each router in an AS. RCP is a logically-centralized platform, separate from the IP forwarding plane, that performs route selection on behalf of routers and communicates selected routes to the routers using the unmodified iBGP protocol. RCP provides scalability without sacrificing correctness. In this paper, we present the design and implementation of an RCP prototype on commodity hardware. Using traces of BGP and internal routing data from a Tier-1 backbone, we demonstrate that RCP is fast and reliable enough to drive the BGP routing decisions for a large network. We show that RCP assigns routes correctly, even when the functionality is replicated and distributed, and that networks using RCP can expect comparable convergence delays to those using today's iBGP architectures.

Proceedings ArticleDOI
13 Mar 2005
TL;DR: This paper provides a classification of interface assignment strategies, and proposes a new strategy that does not require modifications to IEEE 802.11.11 and identifies routing heuristics that are suitable for use with the proposed interface assignment strategy.
Abstract: Multiple channels are available for use in IEEE 802.11. Multiple channels can increase the available network capacity, but require new protocols to exploit the available capacity. This paper studies the problem of improving the capacity of multi-channel wireless networks by using multiple interfaces. We consider the scenario when multiple interfaces are available, but the number of available interfaces is lesser than the number of available channels. We provide a classification of interface assignment strategies, and propose a new strategy that does not require modifications to IEEE 802.11. We also identify routing heuristics that are suitable for use with the proposed interface assignment strategy.

Proceedings ArticleDOI
13 Mar 2005
TL;DR: While it is proved that optimal deployment is very hard in general, it is also shown that only a modest number of reliable, long-range backhaul links and line-powered nodes are required to have a significant impact.
Abstract: The presence of heterogeneous nodes (i.e., nodes with an enhanced energy capacity or communication capability) in a sensor network is known to increase network reliability and lifetime. However, questions of where how many, and what types of heterogeneous resources to deploy remain largely unexplored. We focus on energy and link heterogeneity in ad hoc sensor networks and consider resource-aware MAC and routing protocols to utilize those resources. Using analysis, simulation, and real testbed measurements, we evaluate the impact of number and placement of heterogeneous resources on performance in networks of different sizes and densities. While we prove that optimal deployment is very hard in general, we also show that only a modest number of reliable, long-range backhaul links and line-powered nodes are required to have a significant impact. Properly deployed, heterogeneity can triple the average delivery rate and provide a 5-fold increase in the lifetime (respectively) of a large batten-powered network of simple sensors.

Proceedings ArticleDOI
06 Jun 2005
TL;DR: This paper provides a formal model for the source-location privacy problem in sensor networks and examines the privacy characteristics of different sensor routing protocols, and devised new techniques to enhance source- location privacy that augment these routing protocols.
Abstract: One of the most notable challenges threatening the successful deployment of sensor systems is privacy. Although many privacy-related issues can be addressed by security mechanisms, one sensor network privacy issue that cannot be adequately addressed by network security is source-location privacy. Adversaries may use RF localization techniques to perform hop-by-hop traceback to the source sensor's location. This paper provides a formal model for the source-location privacy problem in sensor networks and examines the privacy characteristics of different sensor routing protocols. We examine two popular classes of routing protocols: the class of flooding protocols, and the class of routing protocols involving only a single path from the source to the sink. While investigating the privacy performance of routing protocols, we considered the tradeoffs between location-privacy and energy consumption. We found that most of the current protocols cannot provide efficient source-location privacy while maintaining desirable system performance. In order to provide efficient and private sensor communications, we devised new techniques to enhance source-location privacy that augment these routing protocols. One of our strategies, a technique we have called phantom routing, has proven flexible and capable of protecting the source's location, while not incurring a noticeable increase in energy overhead. Further, we examined the effect of source mobility on location privacy. We showed that, even with the natural privacy amplification resulting from source mobility, our phantom routing techniques yield improved source-location privacy relative to other routing methods

Journal ArticleDOI
TL;DR: This work proposes a QoS-aware routing protocol that incorporates an admission control scheme and a feedback scheme to meet the QoS requirements of real-time applications and implements these schemes by using two bandwidth estimation methods to find the residual bandwidth available at each node to support new streams.
Abstract: Routing protocols for mobile ad hoc networks (MANETs) have been explored extensively in recent years. Much of this work is targeted at finding a feasible route from a source to a destination without considering current network traffic or application requirements. Therefore, the network may easily become overloaded with too much traffic and the application has no way to improve its performance under a given network traffic condition. While this may be acceptable for data transfer, many real-time applications require quality-of-service (QoS) support from the network. We believe that such QoS support can be achieved by either finding a route to satisfy the application requirements or offering network feedback to the application when the requirements cannot be met. We propose a QoS-aware routing protocol that incorporates an admission control scheme and a feedback scheme to meet the QoS requirements of real-time applications. The novel part of this QoS-aware routing protocol is the use of the approximate bandwidth estimation to react to network traffic. Our approach implements these schemes by using two bandwidth estimation methods to find the residual bandwidth available at each node to support new streams. We simulate our QoS-aware routing protocol for nodes running the IEEE 802.11 medium access control. Results of our experiments show that the packet delivery ratio increases greatly, and packet delay and energy dissipation decrease significantly, while the overall end-to-end throughput is not impacted, compared with routing protocols that do not provide QoS support.

Proceedings Article
01 Dec 2005
TL;DR: This paper first analyzes the possible types of routing protocols that can be used and shows that proactive hop-by-hop routing protocols are the most appropriate for mesh networks, and studies several existing routing metrics, including hop count, ETX, ETT, WCETT and MIC.
Abstract: Designing routing metrics is critical for performance in wireless mesh networks. The unique characteristics of mesh networks, such as static nodes and the shared nature of the wireless medium, invalidate existing solutions from both wired and wireless networks and impose unique requirements on designing routing metrics for mesh networks. In this paper, we focus on identifying these requirements. We first analyze the possible types of routing protocols that can be used and show that proactive hop-by-hop routing protocols are the most appropriate for mesh networks. Then, we examine the requirements for designing routing metrics according to the characteristics of mesh networks and the type of routing protocols used. Finally, we study several existing routing metrics, including hop count, ETX, ETT, WCETT and MIC in terms of their ability to satisfy these requirements. Our simulation results of the performance of these metrics confirm our analysis of these metrics.

Proceedings ArticleDOI
05 Dec 2005
TL;DR: A distributed coordination approach that handles spectrum heterogeneity without relying on the existence of a preassigned common control channel is proposed and carries potential to provide robust operation under network dynamics.
Abstract: Device coordination in open spectrum systems is a challenging problem, particularly since users experience varying spectrum availability over time and location. We propose a distributed coordination approach that handles spectrum heterogeneity without relying on the existence of a preassigned common control channel. Our approach carries potential to provide robust operation under network dynamics. While this approach can be implemented by upgrading the legacy protocol stack without modifying the MAC protocol, we also describe modifications to the MAC protocol that address spectrum heterogeneity and significantly improve system performance. Experimental results show that the proposed distributed coordination scheme outperforms the existing coordination schemes by 25-35% in throughput and provides 50% of delay reduction

Proceedings ArticleDOI
13 Mar 2005
TL;DR: The routing protocol MV is introduced, which learns structure in the movement patterns of network participants and uses it to enable informed message passing and the introduction of autonomous agents as additional participants in DTNs.
Abstract: Disruption-tolerant networks (DTNs) differ from other types of networks in that capacity is exclusively created by the movements of participants. This implies that understanding and influencing the participants' motions can have a significant impact on network performance. In this paper, we introduce the routing protocol MV, which learns structure in the movement patterns of network participants and uses it to enable informed message passing. We also propose the introduction of autonomous agents as additional participants in DTNs. These agents adapt their movements in response to variations in network capacity and demand. We use multi-objective control methods from robotics to generate motions capable of optimizing multiple network performance metrics simultaneously. We present experimental evidence that these strategies, individually and in conjunction, result in significant performance improvements in DTNs.

Proceedings ArticleDOI
25 Sep 2005
TL;DR: The TL-LEACH uses random rotation of local cluster base stations to build a two-level hierarchy that permits to better distribute the energy load among the sensors in the network especially when the density of network is higher.
Abstract: Wireless sensor networks with thousands of tiny sensor nodes are expected to find wide applicability and increasing deployment in coming years, as they enable reliable monitoring and analysis of the environment. In this paper we propose a modification to a well-known protocol for sensor networks called Low Energy Adaptive Clustering Hierarchy (LEACH). This last is designed for sensor networks where end- user wants to remotely monitor the environment. In such situation, the data from the individual nodes must be sent to a central base station, often located far from the sensor network, through which the end-user can access the data. In this context our contribution is represented by building a two-level hierarchy to realize a protocol that saves better the energy consumption. Our TL-LEACH uses random rotation of local cluster base stations (primary cluster-heads and secondary cluster-heads). In this way we build, where it is possible, a two-level hierarchy. This permits to better distribute the energy load among the sensors in the network especially when the density of network is higher. TL- LEACH uses localized coordination to enable scalability and robustness. We evaluated the performances of our protocol with NS-2 and we observed that our protocol outperforms the LEACH in terms of energy consumption and lifetime of the network.

Proceedings ArticleDOI
02 May 2005
TL;DR: The router configuration checker rcc as discussed by the authors detects two broad classes of faults: route validity faults and path visibility faults, where routers may fail to learn routes for paths that exist in the network.
Abstract: The Internet is composed of many independent autonomous systems (ASes) that exchange reachability information to destinations using the Border Gateway Protocol (BGP). Network operators in each AS configure BGP routers to control the routes that are learned, selected, and announced to other routers. Faults in BGP configuration can cause forwarding loops, packet loss, and unintended paths between hosts, each of which constitutes a failure of the Internet routing infrastructure.This paper describes the design and implementation of rcc, the router configuration checker, a tool that finds faults in BGP configurations using static analysis. rcc detects faults by checking constraints that are based on a high-level correctness specification. rcc detects two broad classes of faults: route validity faults, where routers may learn routes that do not correspond to usable paths, and path visibility faults, where routers may fail to learn routes for paths that exist in the network. rcc enables network operators to test and debug configurations before deploying them in an operational network, improving on the status quo where most faults are detected only during operation. rcc has been downloaded by more than sixty-five network operators to date, some of whom have shared their configurations with us. We analyze network-wide configurations from 17 different ASes to detect a wide variety of faults and use these findings to motivate improvements to the Internet routing infrastructure.

Journal ArticleDOI
TL;DR: This paper describes and evaluates ARAN and shows that it is able to effectively and efficiently discover secure routes within an ad hoc network, and details how ARAN can secure routing in environments where nodes are authorized to participate but untrusted to cooperate, as well as environments where participants do not need to be authorization to participate.
Abstract: Initial work in ad hoc routing has considered only the problem of providing efficient mechanisms for finding paths in very dynamic networks, without considering security. Because of this, there are a number of attacks that can be used to manipulate the routing in an ad hoc network. In this paper, we describe these threats, specifically showing their effects on ad hoc on-demand distance vector and dynamic source routing. Our protocol, named authenticated routing for ad hoc networks (ARAN), uses public-key cryptographic mechanisms to defeat all identified attacks. We detail how ARAN can secure routing in environments where nodes are authorized to participate but untrusted to cooperate, as well as environments where participants do not need to be authorized to participate. Through both simulation and experimentation with our publicly available implementation, we characterize and evaluate ARAN and show that it is able to effectively and efficiently discover secure routes within an ad hoc network.

Proceedings ArticleDOI
22 Aug 2005
TL;DR: Examining some of the ways in which resources could be saved by compromising on the level of performance, as to satisfy the particular limitations of network technologies is examined.
Abstract: Wireless and mobile network technologies often impose severe limitations on the availability of resources, resulting in poor and often unsatisfactory performance of the commonly used wireless networking protocols. For instance, power and memory/storage constraints of miniaturized network nodes reduce the throughput capacity and increase the network latency. Through various approaches and technological advances, researchers attempt to somehow compensate for such hardware limitations. However, this is not always necessary. Sometimes, the required performance of such networks does not need to adhere to the level of services that would be required for performance-critical applications. For example, for some applications of sensor networks, minimal latency is not a critical factor and it could be traded off for a more limited resource, such as energy or throughput. Such networks are termed delay-tolerant networks. Thus, to reduce the energy expenditure, transmission range of such sensor nodes would be quite short, leading to network topologies in which the average number of neighbors of the network nodes is very small. If the sensor nodes are mobile, then most of the time a node has no neighbors; only infrequently another node migrates into its neighborhood. This means that the classical networking approach of store-and-forward would not work well, as there is nearly never an intact path between a source and a destination. Several routing protocols have been proposed for this type of networking environment, one example is the Shared Wireless Infostation Model (SWIM), where a packet propagates through the network by being copied (rather than forwarded) from a node to a node, as links are sporadically created. The goal is that one of the copies of the packet reaches the destination. SWIM is an example of the way that non-critical performance could be traded off for insufficient resources, such as the tradeoffs between energy, delay, storage, capacity, and processing complexity. In this paper, we examine some of these tradeoffs, exposing the ways in which resources could be saved by compromising on the level of performance, as to satisfy the particular limitations of network technologies.

Proceedings ArticleDOI
24 Apr 2005
TL;DR: Two methods to tolerate malicious attacks against beacon-based location discovery in sensor networks are presented and the experimental results demonstrate that the proposed methods are promising for the current generation of sensor networks.
Abstract: Many sensor network applications require sensors' locations to function correctly. Despite the recent advances, location discovery for sensor networks in hostile environments has been mostly overlooked. Most of the existing localization protocols for sensor networks are vulnerable in hostile environments. The security of location discovery can certainly be enhanced by authentication. However, the possible node compromises and the fact that location determination uses certain physical features (e.g., received signal strength) of radio signals make authentication not as effective as in traditional security applications. This paper presents two methods to tolerate malicious attacks against beacon-based location discovery in sensor networks. The first method filters out malicious beacon signals on the basis of the "consistency" among multiple beacon signals, while the second method tolerates malicious beacon signals by adopting an it era lively refined voting scheme. Both methods can survive malicious attacks even if the attacks bypass authentication, provided that the benign beacon signals constitute the majority of the "consistent" beacon signals. This paper also presents the implementation of these techniques on MICA2 motes running TinyOS, and the evaluation through both simulation and field experiments. The experimental results demonstrate that the proposed methods are promising for the current generation of sensor networks.

Proceedings ArticleDOI
22 Aug 2005
TL;DR: A metric that estimates the average waiting time for each potential next hop is designed, which provides performance similar to that of schemes that have global knowledge of the network topology, yet without requiring that knowledge.
Abstract: Delay-tolerant networks (DTNs) have the potential to connect devices and areas of the world that are under-served by current networks. A critical challenge for DTNs is determining routes through the network without ever having an end-to-end connection, or even knowing which "routers" will be connected at any given time. Prior approaches have focused either on epidemic message replication or on knowledge of the connectivity schedule. The epidemic approach of replicating messages to all nodes is expensive and does not appear to scale well with increasing load. It can, however, operate without any prior network configuration. The alternatives, by requiring a priori connectivity knowledge, appear infeasible for a self-configuring network.In this paper we present a practical routing protocol that only uses observed information about the network. We designed a metric that estimates how long a message will have to wait before it can be transferred to the next hop. The topology is distributed using a link-state routing protocol, where the link-state packets are "flooded" using epidemic routing. The routing is recomputed when connections are established. Messages are exchanged if the topology suggests that a connected node is "closer" than the current node.We demonstrate through simulation that our protocol provides performance similar to that of schemes that have global knowledge of the network topology, yet without requiring that knowledge. Further, it requires a significantly smaller quantity of buffer, suggesting that our approach will scale with the number of messages in the network, where replication approaches may not.

Journal ArticleDOI
01 Apr 2005
TL;DR: Stable, scalable load-sharing across paths, based on end-to-end measurements, can be achieved on the same rapid time- scale as rate control, namely the time-scale of round-trip times.
Abstract: Dynamic multi-path routing has the potential to improve the reliability and performance of a communication network, but carries a risk. Routing needs to respond quickly to achieve the potential benefits, but not so quickly that the network is destabilized. This paper studies how rapidly routing can respond, without compromising stability.We present a sufficient condition for the local stability of end-to-end algorithms for joint routing and rate control. The network model considered allows an arbitrary interconnection of sources and resources, and heterogeneous propagation delays. The sufficient condition we present is decentralized: the responsiveness of each route is restricted by the round-trip time of that route alone, and not by the round-trip times of other routes. Our results suggest that stable, scalable load-sharing across paths, based on end-to-end measurements, can be achieved on the same rapid time-scale as rate control, namely the time-scale of round-trip times.

Journal ArticleDOI
01 Jul 2005
TL;DR: The authors' measurements and simulations indicate that sub-second link-state IGP convergence can be easily met on an ISP network without any compromise on stability.
Abstract: We describe and analyse in details the various factors that influence the convergence time of intradomain link state routing protocols. This convergence time reflects the time required by a network to react to the failure of a link or a router. To characterise the convergence process, we first use detailed measurements to determine the time required to perform the various operations of a link state protocol on currently deployed routers. We then build a simulation model based on those measurements and use it to study the convergence time in large networks. Our measurements and simulations indicate that sub-second link-state IGP convergence can be easily met on an ISP network without any compromise on stability.

Proceedings ArticleDOI
22 Aug 2005
TL;DR: This paper explores a new point in this design space that aims to strike a better balance between the extensibility and robustness of a routing infrastructure, and proposes a declarative routing system to express routing protocols using a database query language.
Abstract: The Internet's core routing infrastructure, while arguably robust and efficient, has proven to be difficult to evolve to accommodate the needs of new applications. Prior research on this problem has included new hard-coded routing protocols on the one hand, and fully extensible Active Networks on the other. In this paper, we explore a new point in this design space that aims to strike a better balance between the extensibility and robustness of a routing infrastructure. The basic idea of our solution, which we call declarative routing, is to express routing protocols using a database query language. We show that our query language is a natural fit for routing, and can express a variety of well-known routing protocols in a compact and clean fashion. We discuss the security of our proposal in terms of its computational expressive power and language design. Via simulation, and deployment on PlanetLab, we demonstrate that our system imposes no fundamental limits relative to traditional protocols, is amenable to query optimizations, and can sustain long-lived routes under network churn and congestion.

Proceedings ArticleDOI
13 Mar 2005
TL;DR: This work considers the joint optimal design of the physical, medium access control (MAC), and routing layers to maximize the lifetime of energy-constrained wireless sensor networks and proposes an iterative algorithm that alternates between adaptive link scheduling and computation of optimal link rates and transmission powers for a fixed link schedule.
Abstract: We consider the joint optimal design of physical, medium access control (MAC), and routing layers to maximize the lifetime of energy-constrained wireless sensor networks. The problem of computing a lifetime-optimal routing flow, link schedule, and link transmission powers is formulated as a non-linear optimization problem. We first restrict the link schedules to the class of interference-free time division multiple access (TDMA) schedules. In this special case we formulate the optimization problem as a mixed integer-convex program, which can be solved using standard techniques. For general non-orthogonal link schedules, we propose an iterative algorithm that alternates between adaptive link scheduling and computation of optimal link rates and transmission powers for a fixed link schedule. The performance of this algorithm is compared to other design approaches for several network topologies. The results illustrate the advantages of load balancing, multihop routing, frequency reuse, and interference mitigation in increasing the lifetime of energy-constrained networks. We also describe a partially distributed algorithm to compute optimal rates and transmission powers for a given link schedule.

Proceedings ArticleDOI
13 Mar 2005
TL;DR: Analysis and simulation of the algorithms show that nodes discover their neighbors much faster using gossip-based algorithms than using direct-discovery algorithms, and the performance of gossip- based algorithms is insensitive to an increase in node density.
Abstract: We consider the problem of neighbor discovery in static wireless ad hoc networks with directional antennas. We propose several probabilistic algorithms in which nodes perform random, independent transmissions to discover their one-hop neighbors. Our neighbor discovery algorithms are classified into two groups, viz. Direct-Discovery Algorithms in which nodes discover their neighbors only upon receiving a transmission from their neighbors and Gossip-based algorithms in which nodes gossip about their neighbors' location information to enable faster discovery. We first consider the operation of these algorithms in a slotted, synchronous system and mathematically derive their optimal parameter settings. We show how to extend these algorithms for an asynchronous system and describe their optimal design. Analysis and simulation of the algorithms show that nodes discover their neighbors much faster using gossip-based algorithms than using direct-discovery algorithms. Furthermore, the performance of gossip-based algorithms is insensitive to an increase in node density. The efficiency of a neighbor discovery algorithm also depends on the choice of antenna beamwidth. We discuss in detail how the choice of beamwidth impacts the performance of the discovery process and provide insights into how nodes can configure their beamwidths.