scispace - formally typeset
Search or ask a question

Showing papers on "Terpene published in 2022"


Journal ArticleDOI
TL;DR: In this paper , the authors present an overview of current knowledge of essential oils for application in pharmaceutical and medical industries as well as their potential as food preservatives in food industry, and present a review of the potential of EOs in the food industry.

93 citations


Journal ArticleDOI
TL;DR: A comprehensive view of the composition of carotenoids, flavonoids, terpenes, and limonoids of citrus fruits and their associated health benefits is provided in this paper .
Abstract: The increased consumption of fruits, vegetables, and whole grains contributes to the reduced risk of many diseases related to metabolic syndrome, including neurodegenerative diseases, cardiovascular disease (CVD), diabetes, and cancer. Citrus, the genus Citrus L., is one of the most important fruit crops, rich in carotenoids, flavonoids, terpenes, limonoids, and many other bioactive compounds of nutritional and nutraceutical value. Moreover, polymethoxylated flavones (PMFs), a unique class of bioactive flavonoids, abundantly occur in citrus fruits. In addition, citrus essential oil, rich in limonoids and terpenes, is an economically important product due to its potent antioxidant, antimicrobial, and flavoring properties. Mechanistic, observational, and intervention studies have demonstrated the health benefits of citrus bioactives in minimizing the risk of metabolic syndrome. This review provides a comprehensive view of the composition of carotenoids, flavonoids, terpenes, and limonoids of citrus fruits and their associated health benefits.

64 citations


Journal ArticleDOI
TL;DR: In this article , two fungal chimeric class I triterpene synthases, Talaromyces verruculosus talaropentaene synthase (TvTS) and Macrophomina phaseolina macrophomene synthesis (MpMS), were characterized.
Abstract: Abstract All known triterpenes are generated by triterpene synthases (TrTSs) from squalene or oxidosqualene 1 . This approach is fundamentally different from the biosynthesis of short-chain (C 10 –C 25 ) terpenes that are formed from polyisoprenyl diphosphates 2–4 . In this study, two fungal chimeric class I TrTSs, Talaromyces verruculosus talaropentaene synthase (TvTS) and Macrophomina phaseolina macrophomene synthase (MpMS), were characterized. Both enzymes use dimethylallyl diphosphate and isopentenyl diphosphate or hexaprenyl diphosphate as substrates, representing the first examples, to our knowledge, of non-squalene-dependent triterpene biosynthesis. The cyclization mechanisms of TvTS and MpMS and the absolute configurations of their products were investigated in isotopic labelling experiments. Structural analyses of the terpene cyclase domain of TvTS and full-length MpMS provide detailed insights into their catalytic mechanisms. An AlphaFold2-based screening platform was developed to mine a third TrTS, Colletotrichum gloeosporioides colleterpenol synthase (CgCS). Our findings identify a new enzymatic mechanism for the biosynthesis of triterpenes and enhance understanding of terpene biosynthesis in nature.

47 citations


Journal ArticleDOI
TL;DR: In this article , two fungal chimeric class I triterpene synthases, Talaromyces verruculosus talaropentaene synthase (TvTS) and Macrophomina phaseolina macrophomene synthesis (MpMS), were characterized.
Abstract: Abstract All known triterpenes are generated by triterpene synthases (TrTSs) from squalene or oxidosqualene 1 . This approach is fundamentally different from the biosynthesis of short-chain (C 10 –C 25 ) terpenes that are formed from polyisoprenyl diphosphates 2–4 . In this study, two fungal chimeric class I TrTSs, Talaromyces verruculosus talaropentaene synthase (TvTS) and Macrophomina phaseolina macrophomene synthase (MpMS), were characterized. Both enzymes use dimethylallyl diphosphate and isopentenyl diphosphate or hexaprenyl diphosphate as substrates, representing the first examples, to our knowledge, of non-squalene-dependent triterpene biosynthesis. The cyclization mechanisms of TvTS and MpMS and the absolute configurations of their products were investigated in isotopic labelling experiments. Structural analyses of the terpene cyclase domain of TvTS and full-length MpMS provide detailed insights into their catalytic mechanisms. An AlphaFold2-based screening platform was developed to mine a third TrTS, Colletotrichum gloeosporioides colleterpenol synthase (CgCS). Our findings identify a new enzymatic mechanism for the biosynthesis of triterpenes and enhance understanding of terpene biosynthesis in nature.

42 citations


Journal ArticleDOI
18 Feb 2022-Science
TL;DR: Harwood et al. as discussed by the authors reported a scalable preparation of 13 complex terpenes, which minimized protecting group manipulations, functional group interconversions, and redox fluctuations.
Abstract: The synthesis of terpenes is a large field of research that is woven deeply into the history of chemistry. Terpene biosynthesis is a case study of how the logic of a modular design can lead to diverse structures with unparalleled efficiency. This work leverages modern nickel-catalyzed electrochemical sp2–sp3 decarboxylative coupling reactions, enabled by silver nanoparticle–modified electrodes, to intuitively assemble terpene natural products and complex polyenes by using simple modular building blocks. The step change in efficiency of this approach is exemplified through the scalable preparation of 13 complex terpenes, which minimized protecting group manipulations, functional group interconversions, and redox fluctuations. The mechanistic aspects of the essential functionalized electrodes are studied in depth through a variety of spectroscopic and analytical techniques. Description Charging up terpene synthesis A recent strategy for forming carbon–carbon bonds involves the reaction of a redox-active ester with an organometallic coupling partner. This approach suffers from the sensitivity of various functional groups in addition to the ester to the organometallic. Harwood et al. report a versatile electrochemical approach, paired with nickel catalysis, that avoids the organometallic. Modification of the electrode with silver nanoparticles proved key to the method’s broad applicability, which the authors showcased across a range of total and formal terpene natural product syntheses. —JSY Modifying electrodes with silver nanoparticles is broadly enabling for electrochemical formation of carbon–carbon bonds.

33 citations


Journal ArticleDOI
TL;DR: In this article , a review aimed at highlighting marker compounds for different types of propolis, produced by the species Apis mellifera, from different geographical origins and that display different biological activities, and discuss strategies for quality control.
Abstract: Propolis is a resinous natural product produced by honeybees using beeswax and plant exudates. The chemical composition of propolis is highly complex, and varies with region and season. This inherent chemical variability presents several challenges to its standardisation and quality control. The present review was aimed at highlighting marker compounds for different types of propolis, produced by the species Apis mellifera, from different geographical origins and that display different biological activities, and to discuss strategies for quality control. Over 800 compounds have been reported in the different propolises such as temperate, tropical, birch, Mediterranean, and Pacific propolis; these mainly include alcohols, acids and their esters, benzofuranes, benzopyranes, chalcones, flavonoids and their esters, glycosides (flavonoid and diterpene), glycerol and its esters, lignans, phenylpropanoids, steroids, terpenes and terpenoids. Among these, flavonoids (> 140), terpenes and terpenoids (> 160) were major components. A broad range of biological activities, such as anti-oxidant, antimicrobial, anti-inflammatory, immunomodulatory, and anticancer activities, have been ascribed to propolis constituents, as well as the potential of these compounds to be biomarkers. Several analytical techniques, including non-separation and separation methods have been described in the literature for the quality control assessment of propolis. Mass spectrometry coupled with separation methods, followed by chemometric analysis of the data, was found to be a valuable tool for the profiling and classification of propolis samples, including (bio)marker identification. Due to the rampant chemotypic variability, a multiple-marker assessment strategy considering geographical and biological activity marker(s) with chemometric analysis may be a promising approach for propolis quality assessment.The online version contains supplementary material available at 10.1007/s11101-022-09816-1.

27 citations


Journal ArticleDOI
01 Mar 2022-Plants
TL;DR: In this paper , a comprehensive introduction to essential oils, their biosynthesis, naming, analysis, and chemistry is provided, along with a detailed overview of enantiomers and other forms of stereoisomers relevant to the study of natural volatiles and essential oils.
Abstract: The current text provides a comprehensive introduction to essential oils, their biosynthesis, naming, analysis, and chemistry. Importantly, this text quickly brings the reader up to a level of competence in the authentication of essential oils and their components. It gives detailed descriptions of enantiomers and other forms of stereoisomers relevant to the study of natural volatiles and essential oils. The text also describes GC-MS work and provides tips on rapid calculation of arithmetic indices, how to interpret suggested names from the NIST mass spectral library, and what additional efforts are required to validate essential oils and defeat sophisticated adulteration tactics. In brief, essential oils are mixtures of volatile organic compounds that were driven out of the raw plant material in distillation, condensed into an oil that is strongly aroma emitting, and collected in a vessel as the top layer (uncommonly bottom layer) of two phase separated liquids: oil and water. Essential oils commonly include components derived from two biosynthetic groups, being terpenes (monoterpenes, sesquiterpenes and their derivatives) and phenylpropanoids (aromatic ring with a propene tail). The current text provides details of how terpenes and phenylpropanoids are further categorised according to their parent skeleton, then recognised by the character of oxidation, which may be from oxygen, nitrogen, or sulphur, or the presence/absence of a double bond. The essential oil’s science niche is an epicentre of individuals from diverse backgrounds, such as aromatherapy, pharmacy, synthetic and analytical chemistry, or the hobbyist. To make the science more accessible to the curious student or researcher, it was necessary to write this fundamentals-level introduction to the chemistry of essential oils (i.e., organic chemistry in the context of essential oils), which is herein presented as a comprehensive and accessible overview. Lastly, the current review constitutes the only resource that highlights common errors and explains in simplistic detail how to correctly interpret GC-MS data then accurately present the respective chemical information to the wider scientific audience. Therefore, detailed study of the contents herein will equip the individual with prerequisite knowledge necessary to effectively analyse an essential oil and make qualified judgement on its authenticity.

24 citations


Journal ArticleDOI
TL;DR: It was demonstrated here that the ancestral TPS gene originated in land plants after divergence from green algae and encoded a bifunctional ent-kaurene synthase for phytohormone biosynthesis and underwent gene duplication at least twice early in land plant evolution, leading to three ancient TPS lineages.
Abstract: Significance Land plants produce numerous terpenoids that regulate development and mediate environmental interactions. Thus, how typical plant terpene synthase (TPS) genes originated and evolved to create terpenoid diversity is of fundamental interest. By investigating TPSs from the genomes and transcriptomes of diverse taxa of green plants, it was demonstrated here that the ancestral TPS gene originated in land plants after divergence from green algae and encoded a bifunctional ent-kaurene synthase for phytohormone biosynthesis. This ancestral TPS then underwent gene duplication at least twice early in land plant evolution, leading to three ancient TPS lineages reflecting sub-functionalization of class I and II activities for phytohormone biosynthesis and neo-functionalization from primary to secondary metabolism, followed in each case by dynamic functional divergence.

23 citations


Journal ArticleDOI
TL;DR: In this article , the authors report their current knowledge on various fruit extracts and their major bioactive compounds, and determine the effectiveness of organic acids, terpenes, polyphenols, and other types of phenolic compounds with antioxidant properties as a source of antimicrobial agents.
Abstract: Fruit is an essential part of the human diet and is of great interest because of its richness in phytochemicals. Various fruit extracts from citrus, berries and pomegranates have been shown to possess a broad spectrum of medicinal properties. Fruit phytochemicals are of considerable interest because of their antioxidant properties involving different mechanisms of action, which can act against different pathogenic bacteria. The antioxidant capacity of fruit phytochemicals involves different kinds of reactions, such as radical scavenging and chelation or complexation of metal ions. The interaction between fruit phytochemicals and bacteria has different repercussions: it disrupts the cell envelope, disturbs cell–cell communication and gene regulation, and suppresses metabolic and enzymatic activities. Consequently, fruit phytochemicals can directly inhibit bacterial growth or act indirectly by modulating the expression of virulence factors, both of which reduce microbial pathogenicity. The aim of this review was to report our current knowledge on various fruit extracts and their major bioactive compounds, and determine the effectiveness of organic acids, terpenes, polyphenols, and other types of phenolic compounds with antioxidant properties as a source of antimicrobial agents.

20 citations


Journal ArticleDOI
TL;DR: In this paper , the isolated new terpenoids from plant endophytic fungi, their hosts, as well as biological activities, from January 2011 until the end of 2020 are reviewed.

19 citations


Journal ArticleDOI
TL;DR: In this article , a review of the nutraceutical role of two of the main phytochemicals present in Olea europaea fruit and leaf extracts, polyphenols, and triterpenes, on healthy animal growth is presented.
Abstract: There is currently a worldwide consensus and recognition of the undoubted health benefits of the so-called Mediterranean diet, with its intake being associated with a lower risk of mortality. The most important characteristics of this type of diet are based on the consumption of significant amounts of fruit, vegetables, legumes, and nuts, which provide, in addition to some active ingredients, fiber and a proportion of vegetable protein, together with extra virgin olive oil (EVOO) as the main sources of vegetable fat. Fish and meat from poultry and other small farm animals are the main sources of protein. One of the main components, as already mentioned, is EVOO, which is rich in monounsaturated fatty acids and to a lesser extent in polyunsaturated fatty acids. The intake of this type of nutrient also provides an important set of phytochemicals whose health potential is widely spread and agreed upon. These phytochemicals include significant amounts of anthocyanins, stilbenes, flavonoids, phenolic acids, and terpenes of varying complexities. Therefore, the inclusion in the diet of this type of molecules, with a proven healthy effect, provides an unquestionable preventive and/or curative activity on an important group of pathologies related to cardiovascular, infectious, and cancerous diseases, as well as those related to the metabolic syndrome. The aim of this review is therefore to shed light on the nutraceutical role of two of the main phytochemicals present in Olea europaea fruit and leaf extracts, polyphenols, and triterpenes, on healthy animal growth. Their immunomodulatory, anti-infective, antioxidant, anti-aging, and anti-carcinogenic capabilities show them to be potential nutraceuticals, providing healthy growth.

Journal ArticleDOI
TL;DR: The anti-inflammatory effect and action as immunomodulators of triterpenes have been demonstrated in different studies as mentioned in this paper , which suggests that triterbenes could be appointed as natural products with future pharmaceutical applicability.
Abstract: Terpenes are one of the most abundant classes of secondary metabolites produced by plants and can be divided based on the number of isoprene units (C5) in monoterpenes (2 units—C10), sesquiterpenes (3 units—C15), diterpenes (4 units—C20), triterpenes (6 units—C30), etc. Chemically, triterpenes are classified based on their structural skeleton including lanostanes, euphanes, cycloartanes, ursanes, oleananes, lupanes, tirucallanes, cucurbitanes, dammaranes, baccharanes, friedelanes, hopanes, serratanes etc. Additionally, glycosylated (saponins) or highly oxidated/degraded (limonoids) triterpenes could be found in nature. The antiinflammatory effect and action as immunomodulators of these secondary metabolites have been demonstrated in different studies. This review reports an overview of articles published in the last 15 years (from 2006 to 2021 using PubMed and SciFinder database) describing the antiinflammatory effects of different triterpenes with their presumed mechanism of action, suggesting that triterpenes could be appointed as natural products with future pharmaceutical applicability.

Journal ArticleDOI
TL;DR: This review article aims to provide the reader with a broader understanding of the activity of these acids against pathogenic bacteria, and presents mechanisms of the biological activity ofThese substances against microorganisms.
Abstract: Due to the ever-increasing number of multidrug-resistant bacteria, research concerning plant-derived compounds with antimicrobial mechanisms of action has been conducted. Pentacyclic triterpenes, which have a broad spectrum of medicinal properties, are one of such groups. Asiatic acid (AA) and ursolic acid (UA), which belong to this group, exhibit diverse biological activities that include antioxidant, anti-inflammatory, diuretic, and immunostimulatory. Some of these articles usually contain only a short section describing the antibacterial effects of AA or UA. Therefore, our review article aims to provide the reader with a broader understanding of the activity of these acids against pathogenic bacteria. The bacteria in the human body can live in the planktonic form and create a biofilm structure. Therefore, we found it valuable to present the action of AA and UA on both planktonic and biofilm cultures. The article also presents mechanisms of the biological activity of these substances against microorganisms.

Journal ArticleDOI
TL;DR: In this article , a monophyletic lineage of animal-encoded terpene cyclases (TCs) ubiquitous in octocorals is described, and the identification of coral TCs enabled the targeted identification of the enzyme that constructs the coral-exclusive capnellane scaffold.
Abstract: Octocorals are major contributors of terpenoid chemical diversity in the ocean. Natural products from other sessile marine animals are primarily biosynthesized by symbiotic microbes rather than by the host. Here, we challenge this long-standing paradigm by describing a monophyletic lineage of animal-encoded terpene cyclases (TCs) ubiquitous in octocorals. We characterized 15 TC enzymes from nine genera, several of which produce precursors of iconic coral-specific terpenoids, such as pseudopterosin, lophotoxin and eleutherobin. X-ray crystallography revealed that coral TCs share conserved active site residues and structural features with bacterial TCs. The identification of coral TCs enabled the targeted identification of the enzyme that constructs the coral-exclusive capnellane scaffold. Several TC genes are colocalized with genes that encode enzymes known to modify terpenes. This work presents an example of biosynthetic capacity in the kingdom Animalia that rivals the chemical complexity generated by plants, unlocking the biotechnological potential of octocorals for biomedical applications.

Journal ArticleDOI
TL;DR: In this paper , the floor of a mechanically ventilated office room using a commercial cleaner while concurrently measuring gas-phase precursors, oxidants, radicals, secondary oxidation products, and aerosols in real-time; these were detected within minutes after cleaner application.
Abstract: Surface cleaning using commercial disinfectants, which has recently increased during the coronavirus disease 2019 pandemic, can generate secondary indoor pollutants both in gas and aerosol phases. It can also affect indoor air quality and health, especially for workers repeatedly exposed to disinfectants. Here, we cleaned the floor of a mechanically ventilated office room using a commercial cleaner while concurrently measuring gas-phase precursors, oxidants, radicals, secondary oxidation products, and aerosols in real-time; these were detected within minutes after cleaner application. During cleaning, indoor monoterpene concentrations exceeded outdoor concentrations by two orders of magnitude, increasing the rate of ozonolysis under low (<10 ppb) ozone levels. High number concentrations of freshly nucleated sub–10-nm particles (≥105 cm−3) resulted in respiratory tract deposited dose rates comparable to or exceeding that of inhalation of vehicle-associated aerosols.

Journal ArticleDOI
28 Jun 2022-Foods
TL;DR: This review will highlight the main aroma compounds produced by Saccharomyces cerevisiae and other yeasts of oenological interest in relation to process conditions, new non-thermal technologies, and microbial interactions.
Abstract: The aromatic complexity of a wine is mainly influenced by the interaction between grapes and fermentation agents. This interaction is very complex and affected by numerous factors, such as cultivars, degree of grape ripeness, climate, mashing techniques, must chemical–physical characteristics, yeasts used in the fermentation process and their interactions with the grape endogenous microbiota, process parameters (including new non-thermal technologies), malolactic fermentation (when desired), and phenomena occurring during aging. However, the role of yeasts in the formation of aroma compounds has been universally recognized. In fact, yeasts (as starters or naturally occurring microbiota) can contribute both with the formation of compounds deriving from the primary metabolism, with the synthesis of specific metabolites, and with the modification of molecules present in the must. Among secondary metabolites, key roles are recognized for esters, higher alcohols, volatile phenols, sulfur molecules, and carbonyl compounds. Moreover, some specific enzymatic activities of yeasts, linked above all to non-Saccharomyces species, can contribute to increasing the sensory profile of the wine thanks to the release of volatile terpenes or other molecules. Therefore, this review will highlight the main aroma compounds produced by Saccharomyces cerevisiae and other yeasts of oenological interest in relation to process conditions, new non-thermal technologies, and microbial interactions.

Journal ArticleDOI
TL;DR: In the present study phytochemical screening, GCMS, FTIR profile of bioactive natural products from C. cyminum revealed the presence of alkaloids, anthraquinones, carbohydrates, coumarins, flavonoids, glycosides, proteins, quinones, saponins, steroids, tannins and terpenoids.
Abstract: Seeds of cumin (Cuminum cyminum L.) are widely used as a spice for their distinctive aroma. C. cyminum have been used in traditional medicine to treat a variety of diseases. Literature presents ample evidence for biomedical activities of cumin which is attributed to its bioactive secondary metabolites - terpenes, phenols, and flavonoids. Besides, health effects of cumin seeds have been experimentally validated through phytochemical analysis depicting the presence of a wide array of bioactive secondary metabolites (BASMs) viz., alkaloid, coumarin, anthraquinone, flavonoid, glycoside, protein, resin, saponin, tannin and steroid. Pharmacological studies indicate that BASMs in seeds of C. cyminum exert antimicrobial, insecticidal, anti-inflammatory, analgesic, antioxidant, anticancer, antidiabetic, anti-platelet-aggregation, hypotensive, bronchodilatory, immunological, contraceptive, anti-amyloidogenic, anti-osteoporotic, aldose reductase, α-glucosidase and tyrosinase inhibitory effects. In the present study phytochemical screening, GCMS, FTIR profile of bioactive natural products from C. cyminum has been envisaged. Phytochemical screening revealed the presence of alkaloids, anthraquinones, carbohydrates, coumarins, flavonoids, glycosides, proteins, quinones, saponins, steroids, tannins and terpenoids. GC-MS analysis revealed the presence of 21 compounds, of which Cuminaldehyde was prominent. FTIR analysis showed the presence of a strong peak value for 15 compounds and medium peak value for 6 compounds. Many of the compounds in the list could be ADMET bioprospected for biomedical applications as natural drug leads. Keywords: Cuminum cyminum; Cuminaldehyde; Bioactive Natural Products; GCMS; FTIR

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors evaluated the metabolic profiles and biological activity in four Tibetan teas and found that CC and 131 were rich in terpenoids and lipids, while MZ contained the highest contents of amino acids and their derivatives, phenolic acids and flavonoids.

Journal ArticleDOI
TL;DR: In this paper , the synergism of monoterpene geraniol with clinically and non-clinically used compounds was explored as potential candidates for treating different types of cancer.

Journal ArticleDOI
TL;DR: A review of the anti-viral properties of triterpenes can be found in this article , where the structure activity relationship studies have been described as well as brief biosynthesis of these triterbenes is discussed.
Abstract: Triterpenes are naturally occurring derivatives biosynthesized following the isoprene rule of Ruzicka. The triterpenes have been reported to possess a wide range of therapeutic applications including anti-viral properties. In this review, the recent studies (2010–2020) concerning the anti-viral activities of triterpenes have been summarized. The structure activity relationship studies have been described as well as brief biosynthesis of these triterpenes is discussed.

Journal ArticleDOI
TL;DR: In this article , the authors identify and characterize the Australian native sandalwood nuts, wattle seeds, lemongrass, and old man saltbush for phenolic compounds and their antioxidant activities.
Abstract: Polyphenols are considered vital bioactive compounds beneficial for human health. The Australian flora is enriched with polyphenols which are not fully characterized yet. Thus, the main objective of this study was to identify and characterize the Australian native sandalwood nuts, wattle seeds, lemongrass, and old man saltbush for phenolic compounds and their antioxidant activities. In this study, we tentatively identified a total of 155 phenolic compounds including 25 phenolic acids, 55 flavonoids, 22 isoflavonoids, 22 tannins, 22 lignans, 33 stilbenes, 33 coumarins and derivatives, 12 tyrosols and derivatives, and 6 phenolic terpenes. The highest total phenolic content (TPC) (15.09 ± 0.88 mg GAE/g) was quantified in lemongrass, while the lowest TPC (4.17 ± 0.33 mg GAE/g) was measured in wattle seeds. The highest total flavonoid content (TFC) and total condensed tannins (TCT) were measured in lemongrass and wattle seeds, respectively. A total of 18 phenolic metabolites were quantified/semi-quantified in this experiment. Lemongrass contains a vast number of phenolic metabolites.

Journal ArticleDOI
TL;DR: In this paper , two natural terpenes Carvacrol and Eugenol were encapsulated in chitosan nanoparticles in different ratios of Chitosans:terpene.

Journal ArticleDOI
TL;DR: In this paper , the synthesis of chiral copper(ii) complexes with terpene derivatives of ethylenediamine and the results of studying their antibacterial, antifungal and antioxidant activity in vitro are discussed.
Abstract: The synthesis of new chiral copper(ii) complexes with terpene derivatives of ethylenediamine and the results of studying their antibacterial, antifungal and antioxidant activity in vitro are discussed. All studied copper complexes (1–4) showed significantly higher antifungal activity against the strains of C. albicans, S. salmonicolor and P. notatum compared to the activity of the clinical antifungal drug amphotericin. High antibacterial activity of copper complexes with terpene derivatives of ethylenediamine was revealed against the S. aureus (MRSA) strain, which is resistant to the reference antibiotic ciprofloxacin. Using various test systems, a comparative assessment of the antioxidant activity (AOA) of the synthesized copper complexes and the ligands was carried out. The salen-type complex 4, which has the highest AOA in the model of initiated oxidation of a substrate containing animal lipids, was superior to other copper complexes in the ability to protect erythrocytes under conditions of H2O2-induced hemolysis.

Journal ArticleDOI
TL;DR: This work presents the first examples of optically active hexameric resorcin[4]arene capsules, their ability to enantioselectively catalyze tail-to-head terpene cyclizations, and the surprisingly high sensitivity of enantiOSElectivity on the structural modifications.
Abstract: Abstract Molecular capsules enable the conversion of substrates inside a closed cavity, mimicking to some extent enzymatic catalysis. Chirality transfer from the molecular capsule onto the encapsulated substrate has been only studied in a few cases. Here we demonstrate that chirality transfer is possible inside a rather large molecular container of approximately 1400 Å3. Specifically, we present 1) the first examples of optically active hexameric resorcin[4]arene capsules, 2) their ability to enantioselectively catalyze tail‐to‐head terpene cyclizations, and 3) the surprisingly high sensitivity of enantioselectivity on the structural modifications.

Journal ArticleDOI
TL;DR: In this article , the authors provide an in-depth description of novel strategies for improving cell factory performance, focusing on improving transcriptional and translational efficiencies through static and dynamic regulatory elements, enzyme engineering and high-throughput screening strategies.
Abstract: Abstract Terpenoids form the most diversified class of natural products, which have gained application in the pharmaceutical, food, transportation, and fine and bulk chemical industries. Extraction from naturally occurring sources does not meet industrial demands, whereas chemical synthesis is often associated with poor enantio-selectivity, harsh working conditions, and environmental pollutions. Microbial cell factories come as a suitable replacement. However, designing efficient microbial platforms for isoprenoid synthesis is often a challenging task. This has to do with the cytotoxic effects of pathway intermediates and some end products, instability of expressed pathways, as well as high enzyme promiscuity. Also, the low enzymatic activity of some terpene synthases and prenyltransferases, and the lack of an efficient throughput system to screen improved high-performing strains are bottlenecks in strain development. Metabolic engineering and synthetic biology seek to overcome these issues through the provision of effective synthetic tools. This review sought to provide an in-depth description of novel strategies for improving cell factory performance. We focused on improving transcriptional and translational efficiencies through static and dynamic regulatory elements, enzyme engineering and high-throughput screening strategies, cellular function enhancement through chromosomal integration, metabolite tolerance, and modularization of pathways. Graphical Abstract

Journal ArticleDOI
TL;DR: A review of chemical, biosynthesis, and biological studies on terpenoids discovered from the genus Aspergillus, including mono-, sesqui-, di-, sester-, tri-, and meroterpenoids, is presented in this article .

Journal ArticleDOI
TL;DR: In this paper , the authors reviewed the chemical constituents, pharmacological effects, applications and safety evaluations of Rosa plants, which provides a reference for the comprehensive utilization of medicine and food resources and gives a scientific basis for the development of medicinal plants of the genus Rosa.

Journal ArticleDOI
TL;DR: In this paper , the presence of 22 compounds (α-Pinene, Camphene, β-Myrcene, α-Terpinine, p-Cymene, trans-3-Caren-2-ol, 1,8-Cineole, γ-Termpinene, Linalool, Isopulegol, Eucalyptol, 2-Naphthalenol, Terpine) were detected.
Abstract: Plant Based Natural Products (PBNPs) have contributed to the development of drugs for diverse indications. Worldwide interest in use of PBNPs has been growing, and its beneficial effects being rediscovered for the development of drug leads. Literature survey on indigenous traditional knowledge bestows ethnopharmacological potentials of PBNPs, has inspired research in drug design and discovery; PBNPs provide a baseline for the development of novel drug leads against various pharmacological targets. Reports indicate that rosemary essential oil (ROEO) extracts show biological bioactivities such as hepatoprotective, antifungal, insecticide, antioxidant and antibacterial. However, their application is limited because of their odor, color and taste. Phytochemical screening indicates the presence of phenol, flavonoids, tannins, alkaloids, carbohydrates, proteins, glycosides, saponins, coumarins, terpenoids, quinones, steroids. Owing to widespread applications of phyto-compounds in ROEO - GCMS was performed. GCMS analysis detected the presence of 22 compounds (α-Pinene, Camphene, β-Myrcene, α-Terpinine, p-Cymene, trans-3-Caren-2-ol, 1,8-Cineole, γ-Terpinene, α-Terpinolene, Linalool, Isopulegol, Eucalyptol, Terpinen-4-ol, 2-Naphthalenol, (-)-Myrtenol, Verbenone, Terpine, α-Copaene, β-Caryophyllene, γ-Cadinene, Caryophyllene oxide) of which 6 compounds (α-Pinene, p-Cymene, Isopulegol, Eucalyptol, 2-Naphthalenol, Terpine) were in abundant. These compounds have been prospected for their molecular and biological properties in the present study. Keywords: Rosmarinus officinalis; Rosemary Essential Oils (ROEO); GCMS; Bioprospecting; PBNPs

Journal ArticleDOI
TL;DR: Achlioptas et al. as mentioned in this paper used a combination of traditional rearrangement chemistry and transition-metal-catalyzed C-C cleavage methods, which were primarily developed in the early twenty-first century, to implement this remodeling approach.
Abstract: ConspectusThe preparation of complex molecules (e.g., biologically active secondary metabolites) remains an important pursuit in chemical synthesis. By virtue of their sophisticated architectures, complex natural products inspire total synthesis campaigns that can lead to completely new ways of building molecules. In the twentieth century, one such paradigm which emerged was the use of naturally occurring "chiral pool terpenes" as starting materials for total synthesis. These inexpensive and naturally abundant molecules provide an easily accessed source of enantioenriched material for the enantiospecific preparation of natural products. The most common applications of chiral pool terpenes are in syntheses where their structure can, entirely or largely, be superimposed directly onto a portion of the target structure. Less straightforward uses, where the structure of the starting chiral pool terpene is not immediately evident in the structure of the target, can be more challenging to implement. Nevertheless, these "nonintuitive" approaches illustrate the ultimate promise of chiral pool-based strategies: that any single chiral pool terpene could be applied to syntheses of an indefinite number of structurally diverse complex synthetic targets.By definition, such strategies require carefully orchestrated sequences of C-C bond forming and C-C cleaving reactions which result in remodeling of the terpene architecture. The combination of traditional rearrangement chemistry and transition-metal-catalyzed C-C cleavage methods, the latter of which were primarily developed in the early twenty-first century, provide a rich and powerful toolbox for implementing this remodeling approach. In this Account, we detail our efforts to use a variety of C-C cleavage tactics in the skeletal remodeling of carvone, a chiral pool terpene. This skeletal remodeling strategy enabled the reorganization of the carvone scaffold into synthetic intermediates with a variety of carboskeletons, which we, then, leveraged for the total syntheses of structurally disparate terpene natural products.We begin by describing our initial investigations into various, mechanistically distinct C-C cleavage processes involving cyclobutanols synthesized from carvone. These initial studies showcased how electrophile-mediated semipinacol rearrangements of these cyclobutanols can lead to [2.2.1]bicyclic intermediates, and how Rh- and Pd-catalyzed C-C cleavage can lead to a variety of densely functionalized cyclohexenes pertinent to natural product synthesis. We, then, present several total syntheses using these synthetic intermediates, beginning with the bridged, polycyclic sesquiterpenoid longiborneol, which was synthesized from a carvone-derived [2.2.1]bicycle following a key semipinacol rearrangement. Next, we discuss how several members of the macrocyclic phomactin family were synthesized from a cyclohexene derivative prepared through a Rh-catalyzed C-C cleavage reaction. Finally, we describe our synthesis of the marine diterpene xishacorene B, which was prepared using a key Pd-catalyzed C-C cleavage/cross-coupling that facilitated the assembly of the core [3.3.1]bicycle that is resident in the natural product structure.

Journal ArticleDOI
01 Feb 2022-Biology
TL;DR: The extraction, chemical structures and anti-cholinesterase mechanisms of terpenes, which support and encourage future research on drug discovery and development in treating Alzheimer’s disease are focused on.
Abstract: Simple Summary Plant-derived terpenes have been a research interest in the recent years, as they are believed to possess the ability to function as a cholinesterase inhibitor. As the deficit of cholinergic activity is one of the factors that causes cognitive impairment in Alzheimer’s disease patients, it serves as a great therapeutic target. It has been found that various terpenoids, such as diterpenoids, triterpenoids and sesquiterpenoids, do have the ability to inhibit cholinesterase activity, and their chemical structures do play a role in this. As terpenoids possess anti-cholinesterase properties, it is encouraged to have future research on drug discovery and development in treating Alzheimer’s disease. Abstract Plant-derived terpenes are the prolific source of modern drugs such as taxol, chloroquine and artemisinin, which are widely used to treat cancer and malaria infections. There are research interests in recent years on terpene-derived metabolites (diterpenes, triterpenes and sesquiterpenes), which are believed to serve as excellent cholinesterase inhibitors. As cholinesterase inhibitors are the current treatment for Alzheimer’s disease, terpene-derived metabolites will have the potential to be involved in the future drug development for Alzheimer’s disease. Hence, a bibliographic search was conducted by using the keywords “terpene”, “cholinesterase” and “Alzheimer’s disease”, along with cross-referencing from 2011 to 2020, to provide an overview of natural terpenes with potential anticholinesterase properties. This review focuses on the extraction, chemical structures and anti-cholinesterase mechanisms of terpenes, which support and encourage future research on drug discovery and development in treating Alzheimer’s disease.