scispace - formally typeset
Search or ask a question

Showing papers on "Wireless published in 2005"


Journal ArticleDOI
Simon Haykin1
TL;DR: Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks: radio-scene analysis, channel-state estimation and predictive modeling, and the emergent behavior of cognitive radio.
Abstract: Cognitive radio is viewed as a novel approach for improving the utilization of a precious natural resource: the radio electromagnetic spectrum. The cognitive radio, built on a software-defined radio, is defined as an intelligent wireless communication system that is aware of its environment and uses the methodology of understanding-by-building to learn from the environment and adapt to statistical variations in the input stimuli, with two primary objectives in mind: /spl middot/ highly reliable communication whenever and wherever needed; /spl middot/ efficient utilization of the radio spectrum. Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks. 1) Radio-scene analysis. 2) Channel-state estimation and predictive modeling. 3) Transmit-power control and dynamic spectrum management. This work also discusses the emergent behavior of cognitive radio.

12,172 citations


Book
01 Jan 2005
TL;DR: In this paper, the authors propose a multiuser communication architecture for point-to-point wireless networks with additive Gaussian noise detection and estimation in the context of MIMO networks.
Abstract: 1. Introduction 2. The wireless channel 3. Point-to-point communication: detection, diversity and channel uncertainty 4. Cellular systems: multiple access and interference management 5. Capacity of wireless channels 6. Multiuser capacity and opportunistic communication 7. MIMO I: spatial multiplexing and channel modeling 8. MIMO II: capacity and multiplexing architectures 9. MIMO III: diversity-multiplexing tradeoff and universal space-time codes 10. MIMO IV: multiuser communication A. Detection and estimation in additive Gaussian noise B. Information theory background.

8,084 citations


MonographDOI
01 Jan 2005

5,919 citations



Journal ArticleDOI
TL;DR: Some of the important PAPR reduction techniques for multicarrier transmission including amplitude clipping and filtering, coding, partial transmit sequence, selected mapping, interleaving, tone reservation, tone injection, and active constellation extension are described.
Abstract: High peak-to-average power ratio of the transmit signal is a major drawback of multicarrier transmission such as OFDM or DMT. This article describes some of the important PAPR reduction techniques for multicarrier transmission including amplitude clipping and filtering, coding, partial transmit sequence, selected mapping, interleaving, tone reservation, tone injection, and active constellation extension. Also, we make some remarks on the criteria for PAPR reduction technique selection and briefly address the problem of PAPR reduction in OFDMA and MIMO-OFDM.

2,093 citations


Proceedings ArticleDOI
13 Mar 2005
TL;DR: It is shown that intelligent channel assignment is critical to Hyacinth's performance, and distributed algorithms that utilize only local traffic load information to dynamically assign channels and to route packets are presented, and their performance is compared against a centralized algorithm that performs the same functions.
Abstract: Even though multiple non-overlapped channels exist in the 2.4 GHz and 5 GHz spectrum, most IEEE 802.11-based multi-hop ad hoc networks today use only a single channel. As a result, these networks rarely can fully exploit the aggregate bandwidth available in the radio spectrum provisioned by the standards. This prevents them from being used as an ISP's wireless last-mile access network or as a wireless enterprise backbone network. In this paper, we propose a multi-channel wireless mesh network (WMN) architecture (called Hyacinth) that equips each mesh network node with multiple 802.11 network interface cards (NICs). The central design issues of this multi-channel WMN architecture are channel assignment and routing. We show that intelligent channel assignment is critical to Hyacinth's performance, present distributed algorithms that utilize only local traffic load information to dynamically assign channels and to route packets, and compare their performance against a centralized algorithm that performs the same functions. Through an extensive simulation study, we show that even with just 2 NICs on each node, it is possible to improve the network throughput by a factor of 6 to 7 when compared with the conventional single-channel ad hoc network architecture. We also describe and evaluate a 9-node Hyacinth prototype that Is built using commodity PCs each equipped with two 802.11a NICs.

1,636 citations


Book
01 Jan 2005
TL;DR: The Wireless Communications, Second Edition as mentioned in this paper provides an authoritative overview of the principles and applications of mobile communication technology, including wireless propagation channels, transceivers and signal processing, multiple access and advanced transceiver schemes, and standardised wireless systems.
Abstract: "Professor Andreas F. Molisch, renowned researcher and educator, has put together the comprehensive book, Wireless Communications. The second edition, which includes a wealth of new material on important topics, ensures the role of the text as the key resource for every student, researcher, and practitioner in the field."Professor Moe Win, MIT, USAWireless communications has grown rapidly over the past decade from a niche market into one of the most important, fast moving industries. Fully updated to incorporate the latest research and developments, Wireless Communications, Second Edition provides an authoritative overview of the principles and applications of mobile communication technology.The author provides an in-depth analysis of current treatment of the area, addressing both the traditional elements, such as Rayleigh fading, BER in flat fading channels, and equalisation, and more recently emerging topics such as multi-user detection in CDMA systems, MIMO systems, and cognitive radio. The dominant wireless standards; including cellular, cordless and wireless LANs; are discussed.Topics featured include: wireless propagation channels, transceivers and signal processing, multiple access and advanced transceiver schemes, and standardised wireless systems.Combines mathematical descriptions with intuitive explanations of the physical facts, enabling readers to acquire a deep understanding of the subject.Includes new chapters on cognitive radio, cooperative communications and relaying, video coding, 3GPP Long Term Evolution, and WiMax; plus significant new sections on multi-user MIMO, 802.11n, and information theory.Companion website featuring: supplementary material on 'DECT', solutions manual and presentation slides for instructors, appendices, list of abbreviations and other useful resources.

1,579 citations


Proceedings ArticleDOI
22 Aug 2005
TL;DR: ExOR chooses each hop of a packet's route after the transmission for that hop, so that the choice can reflect which intermediate nodes actually received the transmission, which gives each transmission multiple opportunities to make progress.
Abstract: This paper describes ExOR,an integrated routing and MAC protocol that increases the throughput of large unicast transfers in multi-hop wireless networks. ExOR chooses each hop of a packet's route after the transmission for that hop, so that the choice can reflect which intermediate nodes actually received the transmission. This deferred choice gives each transmission multiple opportunities to make progress. As a result ExOR can use long radio links with high loss rates, which would be avoided by traditional routing. ExOR increases a connection's throughput while using no more network capacity than traditional routine.ExOR's design faces the following challenges. The nodes that receive each packet must agree on their identities and choose one forwarder.The agreement protocol must have low overhead, but must also be robust enough that it rarely forwards a packet zero times or more than once. Finally, ExOR must choose the forwarder with the lowest remaining cost to the ultimate destination.Measurements of an implementation on a 38-node 802.11b test-bed show that ExOR increases throughput for most node pairs when compared with traditional routing. For pairs between which traditional routing uses one or two hops, ExOR's robust acknowledgments prevent unnecessary retransmissions,increasing throughput by nearly 35%. For more distant pairs, ExOR takes advantage of the choice of forwarders to provide throughput gains of a factor of two to four.

1,575 citations


Proceedings ArticleDOI
25 May 2005
TL;DR: This paper proposes four different jamming attack models that can be used by an adversary to disable the operation of a wireless network, and evaluates their effectiveness in terms of how each method affects the ability of a Wireless node to send and receive packets.
Abstract: Wireless networks are built upon a shared medium that makes it easy for adversaries to launch jamming-style attacks. These attacks can be easily accomplished by an adversary emitting radio frequency signals that do not follow an underlying MAC protocol. Jamming attacks can severely interfere with the normal operation of wireless networks and, consequently, mechanisms are needed that can cope with jamming attacks. In this paper, we examine radio interference attacks from both sides of the issue: first, we study the problem of conducting radio interference attacks on wireless networks, and second we examine the critical issue of diagnosing the presence of jamming attacks. Specifically, we propose four different jamming attack models that can be used by an adversary to disable the operation of a wireless network, and evaluate their effectiveness in terms of how each method affects the ability of a wireless node to send and receive packets. We then discuss different measurements that serve as the basis for detecting a jamming attack, and explore scenarios where each measurement by itself is not enough to reliably classify the presence of a jamming attack. In particular, we observe that signal strength and carrier sensing time are unable to conclusively detect the presence of a jammer. Further, we observe that although by using packet delivery ratio we may differentiate between congested and jammed scenarios, we are nonetheless unable to conclude whether poor link utility is due to jamming or the mobility of nodes. The fact that no single measurement is sufficient for reliably classifying the presence of a jammer is an important observation, and necessitates the development of enhanced detection schemes that can remove ambiguity when detecting a jammer. To address this need, we propose two enhanced detection protocols that employ consistency checking. The first scheme employs signal strength measurements as a reactive consistency check for poor packet delivery ratios, while the second scheme employs location information to serve as the consistency check. Throughout our discussions, we examine the feasibility and effectiveness of jamming attacks and detection schemes using the MICA2 Mote platform.

1,350 citations


Book ChapterDOI
08 May 2005
TL;DR: Experimental results are presented showing that 802.11 and GSM beacons are sufficiently pervasive in the greater Seattle area to achieve 20-30 meter median accuracy with nearly 100% coverage measured by availability in people's daily lives.
Abstract: Location awareness is an important capability for mobile computing. Yet inexpensive, pervasive positioning—a requirement for wide-scale adoption of location-aware computing—has been elusive. We demonstrate a radio beacon-based approach to location, called Place Lab, that can overcome the lack of ubiquity and high-cost found in existing location sensing approaches. Using Place Lab, commodity laptops, PDAs and cell phones estimate their position by listening for the cell IDs of fixed radio beacons, such as wireless access points, and referencing the beacons' positions in a cached database. We present experimental results showing that 802.11 and GSM beacons are sufficiently pervasive in the greater Seattle area to achieve 20-30 meter median accuracy with nearly 100% coverage measured by availability in people's daily lives.

1,218 citations


Journal ArticleDOI
TL;DR: A multi-tier telemedicine system that performs real-time analysis of sensors' data, provides guidance and feedback to the user, and can generate warnings based on the user's state, level of activity, and environmental conditions is introduced.
Abstract: Background Recent technological advances in integrated circuits, wireless communications, and physiological sensing allow miniature, lightweight, ultra-low power, intelligent monitoring devices. A number of these devices can be integrated into a Wireless Body Area Network (WBAN), a new enabling technology for health monitoring.

Journal ArticleDOI
TL;DR: This paper modeled, designed, and built small cantilever-based devices using piezoelectric materials that can scavenge power from low-level ambient vibration sources, and presents some new designs that can be tuned to the frequency of the host surface, thereby expanding the method's flexibility.
Abstract: Pervasive networks of wireless sensor and communication nodes have the potential to significantly impact society and create large market opportunities. For such networks to achieve their full potential, however, we must develop practical solutions for self-powering these autonomous electronic devices. We've modeled, designed, and built small cantilever-based devices using piezoelectric materials that can scavenge power from low-level ambient vibration sources. Given appropriate power conditioning and capacitive storage, the resulting power source is sufficient to support networks of ultra-low-power, peer-to-peer wireless nodes. These devices have a fixed geometry and - to maximize power output - we've individually designed them to operate as close as possible to the frequency of the driving surface on which they're mounted. In this paper, we describe these devices and present some new designs that can be tuned to the frequency of the host surface, thereby expanding the method's flexibility. We also discuss piezoelectric designs that use new geometries, some of which are microscale (approximately hundreds of microns).

Proceedings ArticleDOI
05 Dec 2005
TL;DR: The IEEE 802.22 WG is chartered with the development of a CR-based wireless regional area network (WRAN) physical (PHY) and medium access control (MAC) layers for use by license-exempt devices in the spectrum that is currently allocated to the television (TV) service.
Abstract: In November/2004, we witnessed the formation of the first worldwide effort to define a novel wireless air interface standard based on cognitive radios (CRs): the IEEE 802.22 working group (WG). The IEEE 802.22 WG is chartered with the development of a CR-based wireless regional area network (WRAN) physical (PHY) and medium access control (MAC) layers for use by license-exempt devices in the spectrum that is currently allocated to the television (TV) service. Since 802.22 is required to reuse the fallow TV spectrum without causing any harmful interference to incumbents (i.e., the TV receivers), cognitive radio techniques are of primary importance in order to sense and measure the spectrum and detect the presence/absence of incumbent signals. On top of that, other advanced techniques that facilitate coexistence such as dynamic spectrum management and radio environment characterization could be designed. In this paper, we provide a detailed overview of the 802.22 architecture, its requirements, applications, and coexistence considerations that not only form the basis for the definition of this groundbreaking wireless air interface standard, but that will also serve as foundation for future research in the promising area of CRs

Book
01 Jul 2005
TL;DR: This paper presents a meta-analyses of correlation in cyclic Hadamard sequences and its applications to radar, sonar, and synchronization, and describes the properties of correlation as well as applications to Boolean functions.
Abstract: This book provides a comprehensive description of the methodologies and the application areas, throughout the range of digital communication, in which individual signals and sets of signals with favorable correlation properties play a central role. The necessary mathematical background is presented to explain how these signals are generated, and to show how they satisfy the appropriate correlation constraints. All the known methods to obtain balanced binary sequences with two-valued autocorrelation, many of them only recently discovered, are presented in depth. The authors treat important application areas including: Code Division Multiple Access (CDMA) signals, such as those already in widespread use for cell-phone communication, and planned for universal adoption in the various approaches to 'third-generation'(3G) cell-phone use; systems for coded radar and sonar signals; communication signals to minimize mutual interference ('cross-talk') in multi-user environments; and pseudo-random sequence generation for secure authentication and for stream cipher cryptology.

Book
01 Jan 2005
TL;DR: This book covers the fundamental principles of space-time coding for wireless communications over multiple-input multiple-output (MIMO) channels, and sets out practical coding methods for achieving the performance improvements predicted by the theory.
Abstract: This book covers the fundamental principles of space-time coding for wireless communications over multiple-input multiple-output (MIMO) channels, and sets out practical coding methods for achieving the performance improvements predicted by the theory. The theory and practice sections can be used independently of each other. Written by one of the inventors of space-time block coding, this volume is ideal for a graduate student familiar with the basics of digital communications, and for engineers implementing the theory in real systems.

Patent
18 Jul 2005
TL;DR: In this paper, the authors propose a method and apparatus for a wireless health monitoring system for interactively monitoring a disease or health condition of a patient by connecting a mobile phone to or with a digital camera and/or a medical monitoring device.
Abstract: Embodiments of the invention provide a method and apparatus for a wireless health monitoring system for interactively monitoring a disease or health condition of a patient by connecting a mobile phone to or with a digital camera and/or a medical monitoring device. The health related data or visual information from the camera is transmitted to a server using standard internet protocols and may be integrated with various operating systems for handheld or wireless devices, especially those with enhanced capabilities for handing images and visual data.

Journal ArticleDOI
TL;DR: A joint routing and power allocation policy is developed that stabilizes the system and provides bounded average delay guarantees whenever the input rates are within this capacity region, and is applied to an ad hoc wireless network where channel variations are due to user mobility.
Abstract: We consider dynamic routing and power allocation for a wireless network with time-varying channels. The network consists of power constrained nodes that transmit over wireless links with adaptive transmission rates. Packets randomly enter the system at each node and wait in output queues to be transmitted through the network to their destinations. We establish the capacity region of all rate matrices (/spl lambda//sub ij/) that the system can stably support-where /spl lambda//sub ij/ represents the rate of traffic originating at node i and destined for node j. A joint routing and power allocation policy is developed that stabilizes the system and provides bounded average delay guarantees whenever the input rates are within this capacity region. Such performance holds for general arrival and channel state processes, even if these processes are unknown to the network controller. We then apply this control algorithm to an ad hoc wireless network, where channel variations are due to user mobility. Centralized and decentralized implementations are compared, and the stability region of the decentralized algorithm is shown to contain that of the mobile relay strategy developed by Grossglauser and Tse (2002).

Proceedings ArticleDOI
28 Aug 2005
TL;DR: The notion of k-barrier coverage of a belt region using wireless sensors is defined, and efficient algorithms are proposed using which one can quickly determine, after deploying the sensors, whether a region is k- barrier covered.
Abstract: In old times, castles were surrounded by moats (deep trenches filled with water, and even alligators) to thwart or discourage intrusion attempts. One can now replace such barriers with stealthy and wireless sensors. In this paper, we develop theoretical foundations for laying barriers of wireless sensors. We define the notion of k-barrier coverage of a belt region using wireless sensors. We propose efficient algorithms using which one can quickly determine, after deploying the sensors, whether a region is k-barrier covered. Next, we establish the optimal deployment pattern to achieve k-barrier coverage when deploying sensors deterministically. Finally, we consider barrier coverage with high probability when sensors are deployed randomly. We introduce two notions of probabilistic barrier coverage in a belt region -- weak and strong barrier coverage. While weak barrier-coverage with high probability guarantees the detection of intruders as they cross a barrier of stealthy sensors, a sensor network providing strong barrier-coverage with high probability (at the expense of more sensors) guarantees the detection of all intruders crossing a barrier of sensors, even when the sensors are not stealthy. Both types of barrier coverage require significantly less number of sensors than full-coverage, where every point in the region needs to be covered. We derive critical conditions for weak k-barrier coverage, using which one can compute the minimum number of sensors needed to provide weak k-barrier coverage with high probability in a given belt region. Deriving critical conditions for strong k-barrier coverage for a belt region is still an open problem.


Journal ArticleDOI
31 May 2005
TL;DR: Key issues coming up in wireless fieldbus and wireless industrial communication systems are discussed: fundamental problems like achieving timely and reliable transmission despite channel errors; the usage of existing wireless technologies for this specific field of applications; and the creation of hybrid systems in which wireless stations are incorporated into existing wired systems.
Abstract: With the success of wireless technologies in consumer electronics, standard wireless technologies are envisioned for the deployment in industrial environments as well. Industrial applications involving mobile subsystems or just the desire to save cabling make wireless technologies attractive. Nevertheless, these applications often have stringent requirements on reliability and timing. In wired environments, timing and reliability are well catered for by fieldbus systems (which are a mature technology designed to enable communication between digital controllers and the sensors and actuators interfacing to a physical process). When wireless links are included, reliability and timing requirements are significantly more difficult to meet, due to the adverse properties of the radio channels. In this paper, we thus discuss some key issues coming up in wireless fieldbus and wireless industrial communication systems: 1) fundamental problems like achieving timely and reliable transmission despite channel errors; 2) the usage of existing wireless technologies for this specific field of applications; and 3) the creation of hybrid systems in which wireless stations are incorporated into existing wired systems.

Proceedings ArticleDOI
25 Jul 2005
TL;DR: A distributed event detector that automatically triggers data transmission when a well-correlated signal is received by multiple nodes is developed, which is evaluated in terms of reduced energy and bandwidth usage, as well as accuracy of infrasonic signal detection.
Abstract: This paper describes our experiences using a wireless sensor network to monitor volcanic eruptions with low-frequency acoustic sensors. We developed a wireless sensor array and deployed it in July 2004 at Volcan Tingurahua, an active volcano in central Ecuador. The network collected infrasonic (low-frequency acoustic) signals at 102 Hz, transmitting data over a 9 km wireless link to a remote base station. During the deployment, we collected over 54 hours of continuous data which included at least 9 large explosions. Nodes were time-synchronized using a separate GPS receiver, and our data was later correlated with that acquired at a nearby wired sensor array. In addition to continuous sampling, we have developed a distributed event detector that automatically triggers data transmission when a well-correlated signal is received by multiple nodes. We evaluate this approach in terms of reduced energy and bandwidth usage, as well as accuracy of infrasonic signal detection.

Journal ArticleDOI
TL;DR: A cross-layer design is introduced, which optimizes the target packet error rate of AMC at the physical layer, to minimize thpacket loss rate and maximize the average throughput, when combined with a finite-length queue at the data link layer.
Abstract: Assuming there are always sufficient data waiting to be transmitted, adaptive modulation and coding (AMC) schemes at the physical layer have been traditionally designed separately from higher layers. However, this assumption is not always valid when queuing effects are taken into account at the data link layer. In this paper, we analyze the joint effects of finite-length queuing and AMC for transmissions over wireless links. We present a general analytical procedure, and derive the packet loss rate, the average throughput, and the average spectral efficiency (ASE) of AMC. Guided by our performance analysis, we introduce a cross-layer design, which optimizes the target packet error rate of AMC at the physical layer, to minimize thpacket loss rate and maximize the average throughput, when combined with a finite-length queue at the data link layer. Numerical results illustrate the dependence of system performance on various parameters, and quantify the performance gain due to cross-layer optimization. Our focus is on the single user case, but we also discuss briefly possible applications to multiuser scenarios.

Proceedings ArticleDOI
13 Mar 2005
TL;DR: This work proposes a mechanism for secure positioning of wireless devices, that is verifiable multilateration, and shows how this mechanism can be used to secure positioning in sensor networks.
Abstract: So far, the problem of positioning in wireless networks has been mainly studied in a non-adversarial setting. In this work, we analyze the resistance of positioning techniques to position and distance spoofing attacks. We propose a mechanism for secure positioning of wireless devices, that we call verifiable multilateration. We then show how this mechanism can be used to secure positioning in sensor networks. We analyze our system through simulations.

Journal Article
TL;DR: A small camera device called Cyclops is developed that bridges the gap between the computationally constrained wireless sensor nodes such as Motes, and CMOS imagers which, while low power and inexpensive, are nevertheless designed to mate with resource-rich hosts.
Abstract: Despite their increasing sophistication, wireless sensor networks still do not exploit the most powerful of the human senses: vision. Indeed, vision provides humans with unmatched capabilities to distinguish objects and identify their importance. Our work seeks to provide sensor networks with similar capabilities by exploiting emerging, cheap, low-power and small form factor CMOS imaging technology. In fact, we can go beyond the stereo capabilities of human vision, and exploit the large scale of sensor networks to provide multiple, widely different perspectives of the physical phenomena. To this end, we have developed a small camera device called Cyclops that bridges the gap between the computationally constrained wireless sensor nodes such as Motes, and CMOS imagers which, while low power and inexpensive, are nevertheless designed to mate with resource-rich hosts. Cyclops enables development of new class of vision applications that span across wireless sensor network. We describe our hardware and software architecture, its temporal and power characteristics and present some representative applications.

Proceedings ArticleDOI
24 Apr 2005
TL;DR: This paper develops robust statistical methods to make localization attack-tolerant, and proposes an adaptive least squares and least median squares position estimator that has the computational advantages of least squares in the absence of attacks and is capable of switching to a robust mode when being attacked.
Abstract: Many sensor applications are being developed that require the location of wireless devices, and localization schemes have been developed to meet this need. However, as location-based services become more prevalent, the localization infrastructure will become the target of malicious attacks. These attacks will not be conventional security threats, but rather threats that adversely affect the ability of localization schemes to provide trustworthy location information. This paper identifies a list of attacks that are unique to localization algorithms. Since these attacks are diverse in nature, and there may be many unforeseen attacks that can bypass traditional security countermeasures, it is desirable to alter the underlying localization algorithms to be robust to intentionally corrupted measurements. In this paper, we develop robust statistical methods to make localization attack-tolerant. We examine two broad classes of localization: triangulation and RF-based fingerprinting methods. For triangulation-based localization, we propose an adaptive least squares and least median squares position estimator that has the computational advantages of least squares in the absence of attacks and is capable of switching to a robust mode when being attacked. We introduce robustness to fingerprinting localization through the use of a median-based distance metric. Finally, we evaluate our robust localization schemes under different threat conditions.

Journal ArticleDOI
TL;DR: A new paradigm for wireless communications based on competition is proposed, which allows wireless stations to harvest additional resources or free up resources as well as optimally and dynamically adapt their cross-layer transmission strategies to improve multimedia quality and/or power consumption.
Abstract: Wireless networks are poised to enable a variety of existing and emerging multimedia streaming applications. As the use of wireless local area networks spreads beyond simple data transfer to bandwidth-intense, delay-sensitive, and loss-tolerant multimedia applications, addressing quality of service issues become extremely important. Currently, a multitude of protection and adaptation strategies exists in the different layers of the open systems interconnection (OSI) stack. Hence, an in-depth understanding and comparative evaluation of these strategies are necessary to effectively assess and enable the possible trade-offs in multimedia quality, power consumption, implementation complexity, and spectrum utilization that are provided by the various OSI layers. This further opens the question of cross-layer optimization and its effectiveness in providing an improved solution with respect to the above trade-offs. In this article we formalize the cross-layer problem, discuss its challenges, and present several possible solutions. Moreover, we also discuss the impact the cross-layer optimization strategy deployed at one station has on the multimedia performance of other stations. We introduce a new fairness concept for wireless multimedia systems that employs different cross-layer strategies, and show its advantages when compared to existing resource allocation mechanisms used in wireline communications. Finally, we propose a new paradigm for wireless communications based on competition, which allows wireless stations to harvest additional resources or free up resources as well as optimally and dynamically adapt their cross-layer transmission strategies to improve multimedia quality and/or power consumption.

Proceedings ArticleDOI
25 Sep 2005
TL;DR: It is shown that secrecy can be achieved by adding artificially generated noise to the information bearing signal such that it does not degrade the intended receiver's channel.
Abstract: The problem of secret communication between two nodes over a wireless link is considered, where a passive eaves- dropper may overhear the communication. It is desired that the eavesdropper be unable to decode the message. We show that secrecy can be achieved by adding artificially generated noise to the information bearing signal such that it does not degrade the intended receiver's channel. We consider two different scenarios; one in which the transmitter has multiple transmit antennas and the other in which the transmitter has a single antenna but 'helper' nodes are available. In the multiple antenna scenario, the degrees of freedom provided by the multiple antennas is used to generate artificial noise intelligently so that it degrades only the eavesdropper's channel. In the multiple helper scenario, even though the transmitter does not have multiple antennas, the helper nodes simulate the effect of multiple antennas and allow the transmitter to generate artificial noise as in the previous case.

Patent
15 Dec 2005
TL;DR: In this paper, a method and system for providing targeted advertisement information to consumers over a wireless communications network is proposed, where local advertisers register to advertise on certain wireless communications devices that are in close proximity to the advertiser.
Abstract: A method and system for providing targeted advertisement information to consumers over a wireless communications network. In one embodiment, local advertisers register to advertise on certain wireless communications devices that are in close proximity to the advertiser. As a consumer enters a cell site that is near the location of the advertiser, the wireless network delivers a message to the wireless device that is specified by the local advertiser. An acknowledgement signal is then received by the network, and the local advertiser's account is charged for transmission of the advertisement. In a further embodiment, each of the messages stored in the database is also associated with one or more demographic codes, and users of wireless communications device select from one more demographic codes to describer their advertisement preferences. Messages to be transmitted to particular wireless communications devices are selected based upon both the location information and the demographics codes that are associated with the messages.

Proceedings ArticleDOI
28 Aug 2005
TL;DR: It is argued that end-client experience could be significantly improved by making chaotic wireless networks self-managing, and automated power control and rate adaptation algorithms to minimize interference among neighboring APs, while ensuring robust end- client performance are designed and evaluated.
Abstract: Over the past few years, wireless networking technologies have made vast forays into our daily lives Today, one can find 80211 hardware and other personal wireless technology employed at homes, shopping malls, coffee shops and airports Present-day wireless network deployments bear two important properties: they are unplanned, with most access points (APs) deployed by users in a spontaneous manner, resulting in highly variable AP densities; and they are unmanaged, since manually configuring and managing a wireless network is very complicated We refer to such wireless deployments as being chaoticIn this paper, we present a study of the impact of interference in chaotic 80211 deployments on end-client performance First, using large-scale measurement data from several cities, we show that it is not uncommon to have tens of APs deployed in close proximity of each other Moreover, most APs are not configured to minimize interference with their neighbors We then perform trace-driven simulations to show that the performance of end-clients could suffer significantly in chaotic deployments We argue that end-client experience could be significantly improved by making chaotic wireless networks self-managing We design and evaluate automated power control and rate adaptation algorithms to minimize interference among neighboring APs, while ensuring robust end-client performance

Proceedings ArticleDOI
05 Dec 2005
TL;DR: This work looks into spectrum agile radios as a new technology enabled by such emerging regulatory rulings and study its advantages over conventional radios, and extends this spectrum-aware sensor networks to introduce a new sensing architecture to identify and locate white spaces in the spectrum.
Abstract: Today, the largest and most desirable portion of the radio spectrum is allocated to licensed services, which has resulted in the well-known profound scarcity of this resource for emerging applications. With the rapid growth of wireless technologies, current spectrum scarcity has become a serious problem as more and more wireless applications compete for very little spectrum. On the other hand, the licensed spectrum allocated to applications such as television, cellular telephony and public safety show very little usage over time at different geographical locations. This has, therefore, seriously impaired the evolution of newer technologies because of current regulatory constraints on the operation in licensed spectrum, such as TV bands, and is being addressed by FCC through recent rule makings. With the goal of ubiquitous communication in mind, we look into spectrum agile radios as a new technology enabled by such emerging regulatory rulings and study its advantages over conventional radios. Initially, we provide a simple mathematical modeling to understand the utilization that is achievable by spectrum agile radios. Next, we investigate several issues related to spectrum sensing, as it is one of the key pillars to realize spectrum agile radios. Through sensing, the spectrum agile radio identifies the so-called "white-spaces" in the spectrum and then decides whether to occupy those white spaces opportunistically to transmit data. We also discuss the concept of interference temperature introduced by the FCC, and propose a spectrum-aware sensor network as a way to address it Finally, we extend this spectrum-aware sensor networks to introduce a new sensing architecture to identify and locate white spaces in the spectrum