scispace - formally typeset
Search or ask a question

Showing papers by "De-Chen Lin published in 2017"


Journal ArticleDOI
TL;DR: The genomic and epigenomic characteristics of ESCCs are reviewed, with a focus on emerging themes, and their clinical implications and future research directions are discussed.

166 citations


Journal ArticleDOI
01 Aug 2017-Gut
TL;DR: Integrative approaches led to a catalogue of SE-associated master regulators and oncogenic transcripts, which may significantly promote both the understanding of OSCC biology and the development of more innovative therapies.
Abstract: Objectives Oesophageal squamous cell carcinoma (OSCC) is an aggressive malignancy and the major histological subtype of oesophageal cancer. Although recent large-scale genomic analysis has improved the description of the genetic abnormalities of OSCC, few targetable genomic lesions have been identified, and no molecular therapy is available. This study aims to identify druggable candidates in this tumour. Design High-throughput small-molecule inhibitor screening was performed to identify potent anti-OSCC compounds. Whole-transcriptome sequencing (RNA-Seq) and chromatin immunoprecipitation sequencing (ChIP-Seq) were conducted to decipher the mechanisms of action of CDK7 inhibition in OSCC. A variety of in vitro and in vivo cellular assays were performed to determine the effects of candidate genes on OSCC malignant phenotypes. Results The unbiased high-throughput small-molecule inhibitor screening led us to discover a highly potent anti-OSCC compound, THZ1, a specific CDK7 inhibitor. RNA-Seq revealed that low-dose THZ1 treatment caused selective inhibition of a number of oncogenic transcripts. Notably, further characterisation of the genomic features of these THZ1-sensitive transcripts demonstrated that they were frequently associated with super-enhancer (SE). Moreover, SE analysis alone uncovered many OSCC lineage-specific master regulators. Finally, integrative analysis of both THZ1-sensitive and SE-associated transcripts identified a number of novel OSCC oncogenes, including PAK4, RUNX1, DNAJB1, SREBF2 and YAP1, with PAK4 being a potential druggable kinase. Conclusions Our integrative approaches led to a catalogue of SE-associated master regulators and oncogenic transcripts, which may significantly promote both the understanding of OSCC biology and the development of more innovative therapies.

153 citations


Journal ArticleDOI
TL;DR: W whole-exome sequencing was applied to 69 samples from 11 patients to resolve the genetic architecture of subclonal diversification and found that variants within several drug targets were mutated in a fully clonal manner, indicating their therapeutic potentials for hepatocellular carcinoma.
Abstract: Understanding the intratumoral heterogeneity of hepatocellular carcinoma is instructive for developing personalized therapy and identifying molecular biomarkers. Here we applied whole-exome sequencing to 69 samples from 11 patients to resolve the genetic architecture of subclonal diversification. Spatial genomic diversity was found in all 11 hepatocellular carcinoma cases, with 29% of driver mutations being heterogeneous, including TERT, ARID1A, NOTCH2, and STAG2. Similar with other cancer types, TP53 mutations were always shared between all tumor regions, that is, located on the "trunk" of the evolutionary tree. In addition, we found that variants within several drug targets such as KIT, SYK, and PIK3CA were mutated in a fully clonal manner, indicating their therapeutic potentials for hepatocellular carcinoma. Temporal dissection of mutational signatures suggested that mutagenic processes associated with exposure to aristolochic acid and aflatoxin might play a more important role in early, as opposed to late, stages of hepatocellular carcinoma development. Moreover, we observed extensive intratumoral epigenetic heterogeneity in hepatocellular carcinoma based on multiple independent analytical methods and showed that intratumoral methylation heterogeneity might play important roles in the biology of hepatocellular carcinoma cells. Our results also demonstrated prominent heterogeneity of intratumoral methylation even in a stable hepatocellular carcinoma genome. Together, these findings highlight widespread intratumoral heterogeneity at both the genomic and epigenomic levels in hepatocellular carcinoma and provide an important molecular foundation for better understanding the pathogenesis of this malignancy. Cancer Res; 77(9); 2255-65. ©2017 AACR.

153 citations


Journal ArticleDOI
20 Apr 2017-Oncogene
TL;DR: It is reported that ZNF 750 is exclusively deleted, mutated and underexpressed in human SCCs, and low ZNF750 expression is associated with poor survival, and its novel anticancer-associated functions are uncovered.
Abstract: ZNF750 controls epithelial homeostasis by regulating epidermal-differentiation genes, a role underscored by its pathogenic mutations in esophageal squamous cell cancers (SCCs). However, the precise role of ZNF750 in SCC cell biology remains unclear. In this study, we report that ZNF750 is exclusively deleted, mutated and underexpressed in human SCCs, and low ZNF750 expression is associated with poor survival. Restoration of wildtype, but not mutant ZNF750 protein uniquely inhibited the malignant phenotypes of SCC cells both in vitro and in vivo. Notably, ZNF750 promoted the expression of a long non-coding RNA (TINCR), which mediated both cancer-inhibition and differentiation-induction effects of ZNF750. In addition, ZNF750 potently suppressed cell migration by directly inhibiting the transactivation of LAMC2. Together, our findings characterize ZNF750 as a crucial SCC-specific suppressor and uncover its novel anticancer-associated functions.

83 citations


Journal ArticleDOI
TL;DR: The data establish the landscape of SE-associated oncogenic transcriptional network in NPC, which can be exploited for the development of more effective therapeutic regimens for this disease.
Abstract: Nasopharyngeal carcinoma (NPC) is an invasive cancer with particularly high incidence in Southeast Asia and Southern China The pathogenic mechanisms of NPC, particularly those involving epigenetic dysregulation, remain largely elusive, hampering clinical management of this malignancy To identify novel druggable targets, we carried out an unbiased high-throughput chemical screening and observed that NPC cells were highly sensitive to inhibitors of cyclin-dependent kinases (CDK), especially THZ1, a covalent inhibitor of CDK7 THZ1 demonstrated pronounced antineoplastic activities both in vitro and in vivo An integrative analysis using both whole-transcriptome sequencing and chromatin immunoprecipitation sequencing pinpointed oncogenic transcriptional amplification mediated by super-enhancers (SE) as a key mechanism underlying the vulnerability of NPC cells to THZ1 treatment Further characterization of SE-mediated networks identified many novel SE-associated oncogenic transcripts, such as BCAR1, F3, LDLR, TBC1D2, and the long noncoding RNA TP53TG1 These transcripts were highly and specifically expressed in NPC and functionally promoted NPC malignant phenotypes Moreover, DNA-binding motif analysis within the SE segments suggest that several transcription factors (including ETS2, MAFK, and TEAD1) may help establish and maintain SE activity across the genome Taken together, our data establish the landscape of SE-associated oncogenic transcriptional network in NPC, which can be exploited for the development of more effective therapeutic regimens for this disease Cancer Res; 77(23); 6614-26 ©2017 AACR

78 citations


Journal ArticleDOI
TL;DR: Next-generation sequencing is used to interrogate the genetic and pathogenic mechanisms of 240 pediatric ALL cases with their matched remission samples and gives insights into the molecular pathogenesis of this disease.
Abstract: Current standard of care for patients with pediatric acute lymphoblastic leukemia (ALL) is mainly effective, with high remission rates after treatment. However, the genetic perturbations that give rise to this disease remain largely undefined, limiting the ability to address resistant tumors or develop less toxic targeted therapies. Here, we report the use of next-generation sequencing to interrogate the genetic and pathogenic mechanisms of 240 pediatric ALL cases with their matched remission samples. Commonly mutated genes fell into several categories, including RAS/receptor tyrosine kinases, epigenetic regulators, transcription factors involved in lineage commitment, and the p53/cell-cycle pathway. Unique recurrent mutational hotspots were observed in epigenetic regulators CREBBP (R1446C/H), WHSC1 (E1099K), and the tyrosine kinase FLT3 (K663R, N676K). The mutant WHSC1 was established as a gain-of-function oncogene, while the epigenetic regulator ARID1A and transcription factor CTCF were functionally identified as potential tumor suppressors. Analysis of 28 diagnosis/relapse trio patients plus 10 relapse cases revealed four evolutionary paths and uncovered the ordering of acquisition of mutations in these patients. This study provides a detailed mutational portrait of pediatric ALL and gives insights into the molecular pathogenesis of this disease. Cancer Res; 77(2); 390-400. ©2016 AACR.

75 citations


Journal ArticleDOI
01 Jan 2017-Leukemia
TL;DR: Clonality analysis suggests that IDH2/1, DNMT3A, U2AF1 and TET2 mutations are clonal and occur early, and MLL-PTD likely arises after these initial mutations, whereas proliferative mutations (FLT3, RAS), typically appear later, are largely subclonal and tend to be unstable.
Abstract: Partial tandem duplication of MLL (MLL-PTD) characterizes acute myeloid leukemia (AML) patients often with a poor prognosis. To understand the order of occurrence of MLL-PTD in relation to other major AML mutations and to identify novel mutations that may be present in this unique AML molecular subtype, exome and targeted sequencing was performed on 85 MLL-PTD AML samples using HiSeq-2000. Genes involved in the cohesin complex (STAG2), a splicing factor (U2AF1) and a poorly studied gene, MGA were recurrently mutated, whereas NPM1, one of the most frequently mutated AML gene, was not mutated in MLL-PTD patients. Interestingly, clonality analysis suggests that IDH2/1, DNMT3A, U2AF1 and TET2 mutations are clonal and occur early, and MLL-PTD likely arises after these initial mutations. Conversely, proliferative mutations (FLT3, RAS), typically appear later, are largely subclonal and tend to be unstable. This study provides important insights for understanding the relative importance of different mutations for defining a targeted therapeutic strategy for MLL-PTD AML patients.

66 citations


Journal ArticleDOI
TL;DR: It is shown that mice deficient of the circadian clock genes Cry1 and Cry2 unexpectedly display an autoimmune phenotype including high serum IgG concentrations, the presence of serum antinuclear antibodies, and precipitation of IgG, IgM, and complement 3 in glomeruli and massive infiltration of leukocytes into the lungs and kidneys.
Abstract: The circadian system regulates numerous physiological processes including immune responses. Here, we show that mice deficient of the circadian clock genes Cry1 and Cry2 [Cry double knockout (DKO)] develop an autoimmune phenotype including high serum IgG concentrations, serum antinuclear antibodies, and precipitation of IgG, IgM, and complement 3 in glomeruli and massive infiltration of leukocytes into the lungs and kidneys. Flow cytometry of lymphoid organs revealed decreased pre-B cell numbers and a higher percentage of mature recirculating B cells in the bone marrow, as well as increased numbers of B2 B cells in the peritoneal cavity of Cry DKO mice. The B cell receptor (BCR) proximal signaling pathway plays a critical role in autoimmunity regulation. Activation of Cry DKO splenic B cells elicited markedly enhanced tyrosine phosphorylation of cellular proteins compared with cells from control mice, suggesting that overactivation of the BCR-signaling pathway may contribute to the autoimmunity phenotype in the Cry DKO mice. In addition, the expression of C1q, the deficiency of which contributes to the pathogenesis of systemic lupus erythematosus, was significantly down-regulated in Cry DKO B cells. Our results suggest that B cell development, the BCR-signaling pathway, and C1q expression are regulated by circadian clock CRY proteins and that their dysregulation through loss of CRY contributes to autoimmunity.

61 citations


Journal ArticleDOI
13 Feb 2017
TL;DR: A catalog of novel cancer-associated functional lncRNAs is established, which will promote the understanding of lncRNA-mediated regulation in this malignancy.
Abstract: Long non-coding RNAs (lncRNAs) have a critical role in cancer initiation and progression, and thus may mediate oncogenic or tumor suppressing effects, as well as be a new class of cancer therapeutic targets. We performed high-throughput sequencing of RNA (RNA-seq) to investigate the expression level of lncRNAs and protein-coding genes in 30 esophageal samples, comprised of 15 esophageal squamous cell carcinoma (ESCC) samples and their 15 paired non-tumor tissues. We further developed an integrative bioinformatics method, denoted URW-LPE, to identify key functional lncRNAs that regulate expression of downstream protein-coding genes in ESCC. A number of known onco-lncRNA and many putative novel ones were effectively identified by URW-LPE. Importantly, we identified lncRNA625 as a novel regulator of ESCC cell proliferation, invasion and migration. ESCC patients with high lncRNA625 expression had significantly shorter survival time than those with low expression. LncRNA625 also showed specific prognostic value for patients with metastatic ESCC. Finally, we identified E1A-binding protein p300 (EP300) as a downstream executor of lncRNA625-induced transcriptional responses. These findings establish a catalog of novel cancer-associated functional lncRNAs, which will promote our understanding of lncRNA-mediated regulation in this malignancy.

60 citations


Journal ArticleDOI
TL;DR: It is demonstrated that BCL6 is a prognostic marker and a targetable GBM-promoting factor and that Bcl6 overexpression is associated with worse prognosis and the results highlight the promise and merit of targeting BCL 6 for treating this deadly disease.
Abstract: ZBTB transcription factors orchestrate gene transcription during tissue development. However, their roles in glioblastoma (GBM) remain unexplored. Here, through a functional screening of ZBTB genes, we identify that BCL6 is required for GBM cell viability and that BCL6 overexpression is associated with worse prognosis. In a somatic transgenic mouse model, depletion of Bcl6 inhibits the progression of KrasG12V-driven high-grade glioma. Transcriptome analysis demonstrates the involvement of BCL6 in tumor protein p53 (TP53), erythroblastic leukemia viral oncogene homolog (ErbB), and MAPK signaling pathways. Indeed, BCL6 represses the expression of wild-type p53 and its target genes in GBM cells. Knockdown of BCL6 augments the activation of TP53 pathway in response to radiation. Importantly, we discover that receptor tyrosine kinase AXL is a transcriptional target of BCL6 in GBM and mediates partially the regulatory effects of BCL6 on both MEK-ERK (mitogen-activated protein/extracellular signal-regulated kinase kinase-extracellular signal-regulated kinase) and S6K-RPS6 (ribosomal protein S6 kinase-ribosomal protein S6) axes. Similar to BCL6 silencing, depletion of AXL profoundly attenuates GBM proliferation both in vitro and in vivo. Moreover, targeted inhibition of BCL6/nuclear receptor corepressor 1 (NCoR) complex by peptidomimetic inhibitor not only significantly decreases AXL expression and the activity of MEK-ERK and S6K-RPS6 cascades but also displays a potent antiproliferative effect against GBM cells. Together, these findings uncover a glioma-promoting role of BCL6 and provide the rationale of targeting BCL6 as a potential therapeutic approach.

57 citations


Journal ArticleDOI
TL;DR: A novel signaling involving SYK/c-MYC/MALAT1 as a promising therapeutic target for the treatment of EWS is identified, with a long noncoding RNA, MALAT1, identified to be dependent on SYK-mediated signaling.
Abstract: Purpose: Ewing sarcoma (EWS) is a devastating soft tissue sarcoma affecting predominantly young individuals. Tyrosine kinases (TK) and associated pathways are continuously activated in many malignancies, including EWS; these enzymes provide candidate therapeutic targets.Experimental Design: Two high-throughput screens (a siRNA library and a small-molecule inhibitor library) were performed in EWS cells to establish candidate targets. Spleen tyrosine kinase (SYK) phosphorylation was assessed in EWS patients and cell lines. SYK was inhibited by a variety of genetic and pharmacological approaches, and SYK-regulated pathways were investigated by cDNA microarrays. The transcriptional regulation of MALAT1 was examined by ChIP-qPCR, luciferase reporter, and qRT-PCR assays.Results: SYK was identified as a candidate actionable target through both high-throughput screens. SYK was highly phosphorylated in the majority of EWS cells, and SYK inhibition by a variety of genetic and pharmacologic approaches markedly inhibited EWS cells both in vitro and in vivo Ectopic expression of SYK rescued the cytotoxicity triggered by SYK-depletion associated with the reactivation of both AKT and c-MYC. A long noncoding RNA, MALAT1, was identified to be dependent on SYK-mediated signaling. Moreover, c-MYC, a SYK-promoted gene, bound to the promoter of MALAT1 and transcriptionally activated MALAT1, which further promoted the proliferation of EWS cells.Conclusions: This study identifies a novel signaling involving SYK/c-MYC/MALAT1 as a promising therapeutic target for the treatment of EWS. Clin Cancer Res; 23(15); 4376-87. ©2017 AACR.

Journal ArticleDOI
TL;DR: Conditional reprogramming (CR) cell culture technique is concluded to be a highly selective and useful method for growing non‐malignant nasopharyngeal epithelial cells.
Abstract: Nasopharyngeal carcinoma (NPC) is an invasive cancer with particularly high incidence in Southern China and Southeast Asia. The study of NPC is greatly hampered by the lack of reliable cell lines due to the loss of EBV genome and HeLa cell contamination. Conditional reprogramming (CR) cell culture technique has been reported for rapid and efficient establishment of patient-derived normal and tumor cell cultures. The purpose of this study was to assess this method to culture NPC patient-derived primary tumor cells. Using CR protocol, we demonstrated that epithelial cells could be efficiently cultured from normal (70%) and cancerous nasopharyngeal (46%) biopsies. However, by comparing with original tumors in terms of mutation and methylation profiles, epithelial cells derived from cancerous biopsy represented non-malignant cells. Further, they exhibited stem-like characteristics based on their cell surface proteins and could differentiate into pseudostratified epithelium in an air-liquid interface culture system. We conclude that CR method is a highly selective and useful method for growing non-malignant nasopharyngeal epithelial cells.

Journal ArticleDOI
TL;DR: The targeting of p97 with CB-5083 is a novel promising therapeutic approach that should be further evaluated in B-ALL, and it is shown that the absence of XBP1 (XBP1−/−) increased the sensitivity to CB- 5083, leading to the hypothesis that X BP1 splicing counteracts the activity of CB-50083, probably mitigating ER stress.

Journal ArticleDOI
01 Jan 2017-Leukemia
TL;DR: This poster presents a probabilistic procedure for determining the carrier and removal of tumours from the Tournaisian nervous system using a simple, straightforward, and inexpensive procedure called a “cell reprograming procedure”.
Abstract: Ling-Wen Ding1,+, Takayuki Ikezoe2,+, Kar-Tong Tan1,+, Masakazu Mori3, Anand Mayakonda1, Wenwen Chien1, De-Chen Lin1,4, Yan-Yi Jiang1, Michael Lill4, Henry Yang1, Qiao-Yang Sun1,*, and H. Phillip Koeffler1,4 1Cancer Science Institute of Singapore, National University of Singapore, Singapore 2Department of Hematology, Fukushima Medical University, 1 Hikari-ga-oka Fukushima, Fukushima 960-1295, Japan

Journal ArticleDOI
TL;DR: The sequencing results and clonality analyses suggest that relapse of patient D483 directly evolved from the leukemic clone at diagnosis which survived chemotherapy, and presence of CREBBP/NT5C2 mutations suggests that a personalized therapeutic approach should be applied to these two patients.
Abstract: Relapsed acute lymphoblastic leukemia (ALL) is the leading cause of deaths of childhood cancer. Although relapse usually happens in the bone marrow, extramedullary relapse occasionally occurs including either the central nervous system or testis (<1-2%). We selected two pediatric ALL patients who experienced testicular relapse and interrogated their leukemic cells with exome sequencing. The sequencing results and clonality analyses suggest that relapse of patient D483 directly evolved from the leukemic clone at diagnosis which survived chemotherapy. In contrast, relapse leukemia cells (both bone marrow and testis) of patient D727 were likely derived from a common ancestral clone, and testicular relapse likely arose independently from the bone marrow relapsed leukemia. Our findings decipher the mutational spectra and shed light on the clonal evolution of two cases of pediatric ALL with testicular relapse. Presence of CREBBP/NT5C2 mutations suggests that a personalized therapeutic approach should be applied to these two patients.

Journal ArticleDOI
TL;DR: Frequent deletions and UPD suggest that OS often has mutant or non-expressed tumor suppressor genes including two lncRNAs, which are identified and characterized within this genomic locus, strongly suggesting their tumors suppressor activity.
Abstract: Osteosarcoma (OS) has a high degree of chromosomal instability and total copy number (CN) changes. We examined 58 human OS samples including 40 primary tumors, 11 explants, and 7 cell lines using single nucleotide polymorphism (SNP) arrays, and revealed that 70% of the samples had one or more recurrent CN-neutral loss of heterozygosity (CNN‑LOH) also known as uniparental disomy (UPD). Importantly, 17% of the samples showed prominent homozygous deletion of 3q13.31, suggesting its role in tumorigenesis. We identified and characterized two novel lncRNAs, LOC285194 and BC040587, within this genomic locus, strongly suggesting their tumor suppressor activity. Frequent deletions and UPD suggest that OS often has mutant or non-expressed tumor suppressor genes including two lncRNAs.

Journal ArticleDOI
TL;DR: The majority (over 80%) of esophageal cancers are squamous cell carcinomas, which is the leading cause of cancer-related death in its epidemic regions, such as northern China.
Abstract: Esophageal cancer ranks sixth in terms of cancer-associated mortality (1). The majority (over 80%) of esophageal cancers are squamous cell carcinomas (ESCC) (2), which is the leading cause of cancer-related death in its epidemic regions, such as northern China. Even with the advent of modern therapeutic approaches, the 5 years survival of ESCC (<20%) has not significantly improved in the past few decades. These facts necessitate the need for better characterization of the molecular basis of ESCC pathogenesis.