scispace - formally typeset
Search or ask a question

Showing papers by "G. Tzanakos published in 2014"


Journal ArticleDOI
P. Adamson1, I. Anghel2, A. Aurisano3, G.D. Barr4, M. Bishai5, Andrew Blake6, G. J. Bock1, D. Bogert1, S. V. Cao7, C. M. Castromonte8, D. Cherdack9, S. Childress1, Joao A B Coelho9, L. Corwin10, D. Cronin-Hennessy11, J. K. De Jong4, A. V. Devan12, N. E. Devenish13, M. V. Diwan5, Carlos Escobar14, J. J. Evans15, E. Falk13, G. J. Feldman16, M. V. Frohne17, H. R. Gallagher9, R. A. Gomes8, M. C. Goodman18, P. Gouffon19, N. Graf20, R. Gran11, K. Grzelak21, Alec Habig11, S. R. Hahn1, J. Hartnell13, R. Hatcher1, A. Himmel22, A. Holin23, Junwei Huang7, J. Hylen1, G. M. Irwin24, Z. Isvan20, C. James1, D. A. Jensen1, T. Kafka9, S. M. S. Kasahara11, G. Koizumi1, M. Kordosky12, A. E. Kreymer1, Karol Lang7, P. J. Litchfield25, P. Lucas1, W. A. Mann9, Marvin L Marshak11, N. Mayer9, C. L. McGivern20, M. M. Medeiros8, R. Mehdiyev7, J. R. Meier11, M. D. Messier10, D. G. Michael22, Warner A. Miller11, S. R. Mishra26, S. Moed Sher1, C. D. Moore1, L. Mualem22, J. A. Musser10, D. Naples20, J. K. Nelson12, Harvey B Newman22, R. J. Nichol23, J. A. Nowak11, J. O'Connor23, M. Orchanian22, R. B. Pahlka1, J. M. Paley18, R. B. Patterson22, Gregory J Pawloski11, A. Perch23, S. Phan-Budd18, R. K. Plunkett1, N. Poonthottathil1, X. Qiu24, A. Radovic12, B. Rebel1, C. Rosenfeld26, H. A. Rubin27, M. C. Sanchez2, J. Schneps9, A. Schreckenberger7, P. Schreiner18, Rakesh Sharma1, A. Sousa16, N. Tagg28, R. L. Talaga18, Juergen Thomas23, M. A. Thomson6, X. Tian26, A. Timmons15, S. C. Tognini8, R. Toner16, D. Torretta1, G. Tzanakos29, J. Urheim10, P. Vahle12, B. Viren5, A. C. Weber25, R. C. Webb30, Christopher G. White27, L. H. Whitehead31, Leigh H. Whitehead23, Stanley G. Wojcicki24, R. Zwaska1 
TL;DR: A new analysis of neutrino oscillations in MINOS using the complete set of accelerator and atmospheric data using the three-flavor formalism and constrain δ(CP), the θ(23} octant degeneracy and the mass hierarchy is reported.
Abstract: We report on a new analysis of neutrino oscillations in MINOS using the complete set of accelerator and atmospheric data. The analysis combines the ν_μ disappearance and ν_e appearance data using the three-flavor formalism. We measure |Δm^2_(32)|=[2.28–2.46]×10^(−3) eV^2 (68% C.L.) and sin^2θ_(23)=0.35–0.65 (90% C.L.) in the normal hierarchy, and |Δm^2_(32)|=[2.32–2.53]×10^(−3) eV^2 (68% C.L.) and sin2θ23=0.34–0.67 (90% C.L.) in the inverted hierarchy. The data also constrain δ_(CP), the θ_(23) octant degeneracy and the mass hierarchy; we disfavor 36% (11%) of this three-parameter space at 68% (90%) C.L.

252 citations


Journal ArticleDOI
L. Aliaga1, L. Aliaga2, L. Bagby3, B. Baldin3, A. Baumbaugh2, Arie Bodek4, R. Bradford4, William Brooks5, D. J. Boehnlein3, S. Boyd6, H. S. Budd4, Anatoly Butkevich7, D. A. Martinez Caicedo8, C. M. Castromonte8, M.E. Christy9, J. Chvojka4, H. da Motta, D.S. Damiani1, I. Z. Danko6, Mousumi Datta8, R. DeMaat3, J. Devan1, E. Draeger9, S. A. Dytman6, G. A. Díaz2, B. Eberly6, D.A. Edmondson1, Julián Félix10, L. Fields11, G. A. Fiorentini, R. Flight4, A. M. Gago2, H. R. Gallagher12, C.A. George6, J.A. Gielata4, C. Gingu3, B. Gobbi11, R. Gran8, J. Grange13, N. Grossman3, D. A. Harris3, J. Heaton9, A. Higuera10, Jennifer Hobbs11, I.J. Howley1, K. Hurtado14, M. Jerkins15, T. Kafka12, M.O. Kantner1, C. E. Keppel8, J. Kilmer3, M. Kordosky1, A.H. Krajeski1, G. J. Kumbartzki16, H. Lee4, A.G. Leister1, George Locke16, G. Maggi5, E. Maher17, S. Manly4, W. A. Mann12, C. M. Marshall4, K. S. McFarland4, C.L. McGivern5, A. M. McGowan4, A. Mislivec4, Jorge G. Morfin3, J. Mousseau13, D. Naples6, J. K. Nelson1, G. Niculescu18, I. Niculescu18, C.D. O'Connor1, N. Ochoa2, J. Olsen3, B. Osmanov13, J. Osta3, J. L. Palomino, V. Paolone6, J. Park4, Gabriel Perdue4, C. Peña5, Anna Pla-Dalmau3, L. Rakotondravohitra3, Ronald Ransome16, H. Ray13, L. Ren6, P. Rubinov3, Cody Rude9, K.E. Sassin1, H. Schellman11, D. W. Schmitz19, D. W. Schmitz3, R.M. Schneider1, E. Schulte16, C. Simon20, F. D. Snider3, M.C. Snyder1, C. J. Solano Salinas14, N. Tagg21, B. G. Tice16, R. N. Tilden11, G. Tzanakos22, J.P. Velásquez2, T. Walton8, A. Westerberg9, J. Wolcott4, B.A. Wolthuis1, Natasha Woodward9, T. P. Wytock11, G. Zavala10, H.B. Zeng4, D. Zhang1, L.Y. Zhu8, B. P. Ziemer20 
TL;DR: The MINERvA detector as mentioned in this paper is composed of a finely segmented scintillator-based inner tracking region surrounded by electromagnetic and hadronic sampling calorimetry.
Abstract: The MINERvA 6 experiment is designed to perform precision studies of neutrino-nucleus scattering using ν μ and ν ¯ μ neutrinos incident at 1–20 GeV in the NuMI beam at Fermilab. This article presents a detailed description of the MINERvA detector and describes the ex situ and in situ techniques employed to characterize the detector and monitor its performance. The detector is composed of a finely segmented scintillator-based inner tracking region surrounded by electromagnetic and hadronic sampling calorimetry. The upstream portion of the detector includes planes of graphite, iron and lead interleaved between tracking planes to facilitate the study of nuclear effects in neutrino interactions. Observations concerning the detector response over sustained periods of running are reported. The detector design and methods of operation have relevance to future neutrino experiments in which segmented scintillator tracking is utilized.

191 citations


G. A. Fiorentini, D.W. Schmitz, P. A. Rodrigues, L. Aliaga, O. Altinok, B. Baldin, A. Baumbaugh, A. Bodek, D. J. Boehnlein, S. Boyd, R. Bradford, William Brooks, H. S. Budd, Anatoly Butkevich, D. A. Martinez Caicedo, C. M. Castromonte, M. E. Christy, H. Chung, J. Chvojka, M. Clark, H. da Motta, D.S. Damiani, I. Z. Danko, M. Datta, M. Day, R. DeMaat, J. Devan, E. Draeger, S. A. Dytman, G. A. Díaz, B. Eberly, D.A. Edmondson, Julián Félix, L. Fields, T. Fitzpatrick, A. M. Gago, H. R. Gallagher, C.A. George, J.A. Gielata, C. Gingu, B. Gobbi, R. Gran, N. Grossman, J. Hanson, D. A. Harris, J. Heaton, A. Higuera, I. Howley, K. Hurtado, M. Jerkins, T. Kafka, J. Kaisen, M.O. Kanter, C. E. Keppel, J. Kilmer, M. Kordosky, A.H. Krajeski, Sergey A. Kulagin, T. Le, Ha Youn Lee, A.G. Leister, George Locke, G. Maggi, E. Maher, S. Manly, W. A. Mann, C. M. Marshall, K. S. McFarland, C. L. McGivern, A. M. McGowan, A. Mislivec, Jorge G. Morfin, J. Mousseau, D. Naples, J. K. Nelson, G. Niculescu, I. Niculescu, N. Ochoa, C.D. O'Connor, J. Olsen, B. Osmanov, J. Osta, J. L. Palomino, V. Paolone, J. Park, C. E. Patrick, Gabriel Perdue, Cristian Pena, L. Rakotondravohitra, Ronald Ransome, H. Ray, L. Ren, Cody Rude, K.E. Sassin, H. Schellman, R.M. Schneider, E. Schulte, C. Simon, F. D. Snider, M.C. Snyder, Jan T. Sobczyk, C. J. Solano Salinas, N. Tagg, W. Tan, B. G. Tice, G. Tzanakos, J.P. Velásquez, J. Walding, T. Walton, Jeremy Wolcott, B.A. Wolthuis, Natasha Woodward, G. Zavala, H.B. Zeng, D. Zhang, L. Y. Zhu 
01 Jan 2014
TL;DR: In this article, the authors present a survey of the authors of this paper and their colleagues in terms of their work in the field of computer science: 3 P.A. Schmitz, 3 C.E. Howley, K.S. McFarland, 3 K.C. Ochoa, C.M. Martinez Caicedo, 3.
Abstract: G.A. Fiorentini, D.W. Schmitz, 3 P.A. Rodrigues, L. Aliaga, 6 O. Altinok, B. Baldin, A. Baumbaugh, A. Bodek, D. Boehnlein, S. Boyd, R. Bradford, W.K. Brooks, H. Budd, A. Butkevich, D.A. Martinez Caicedo, 3 C.M. Castromonte, M.E. Christy, H. Chung, J. Chvojka, M. Clark, H. da Motta, D.S. Damiani, I. Danko, M. Datta, M. Day, R. DeMaat, ∗ J. Devan, E. Draeger, S.A. Dytman, G.A. Diaz, B. Eberly, D.A. Edmondson, J. Felix, L. Fields, T. Fitzpatrick, ∗ A.M. Gago, H. Gallagher, C.A. George, J.A. Gielata, C. Gingu, B. Gobbi, ∗ R. Gran, N. Grossman, J. Hanson, D.A. Harris, J. Heaton, A. Higuera, I.J. Howley, K. Hurtado, 15 M. Jerkins, T. Kafka, J. Kaisen, M.O. Kanter, C.E. Keppel, † J. Kilmer, M. Kordosky, A.H. Krajeski, S.A. Kulagin, T. Le, H. Lee, A.G. Leister, G. Locke, G. Maggi, ‡ E. Maher, S. Manly, W.A. Mann, C.M. Marshall, K.S. McFarland, 3 C.L. McGivern, A.M. McGowan, A. Mislivec, J.G. Morfin, J. Mousseau, D. Naples, J.K. Nelson, G. Niculescu, I. Niculescu, N. Ochoa, C.D. O’Connor, J. Olsen, B. Osmanov, J. Osta, J.L. Palomino, V. Paolone, J. Park, C.E. Patrick, G.N. Perdue, C. Pena, L. Rakotondravohitra, § R.D. Ransome, H. Ray, L. Ren, C. Rude, K.E. Sassin, H. Schellman, R.M. Schneider, E.C. Schulte, ¶ C. Simon, F.D. Snider, M.C. Snyder, J.T. Sobczyk, 3 C.J. Solano Salinas, N. Tagg, W. Tan, B.G. Tice, G. Tzanakos, ∗ J.P. Velasquez, J. Walding, ∗∗ T. Walton, J. Wolcott, B.A. Wolthuis, N. Woodward, G. Zavala, H.B. Zeng, D. Zhang, L.Y. Zhu, and B.P. Ziemer

81 citations


Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2918 moreInstitutions (184)
TL;DR: In this article, a study of the production of top-quark pairs together with heavy-flavor quarks, collectively referred to as (tt) over bar + HF, was performed.
Abstract: Using a sample of dilepton top-quark pair ((tt) over bar) candidate events, a study is performed of the production of top-quark pairs together with heavy-flavor (HF) quarks, the sum of (tt) over bar + b + X and (tt) over bar + c + X, collectively referred to as (tt) over bar + HF. The data set used corresponds to an integrated luminosity of 4.7 fb(-1) of proton-proton collisions at a center-of-mass energy of 7 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. The presence of additional HF (b or c) quarks in the (tt) over bar sample is inferred by looking for events with at least three b-tagged jets, where two are attributed to the b quarks from the (tt) over bar decays and the third to additional HF production. The dominant background to (tt) over bar + HF in this sample is (tt) over bar + jet events in which a light-flavor jet is misidentified as a heavy-flavor jet. To determine the heavy-and light-flavor content of the additional b-tagged jets, a fit to the vertex mass distribution of b-tagged jets in the sample is performed. The result of the fit shows that 79 +/- 14 (stat) +/- 22 (syst) of the 105 selected extra b-tagged jets originate from HF quarks, 3 standard deviations away from the hypothesis of zero (tt) over bar + HF production. The result for extra HF production is quoted as a ratio (R-HF) of the cross section for (tt) over bar + HF production to the cross section for (tt) over bar production with at least one additional jet. Both cross sections are measured in a fiducial kinematic region within the ATLAS acceptance. R-HF is measured to be [6.2 +/- 1.1(stat) +/- 1.8 (syst)]% for jets with p(T) > 25 GeV and vertical bar eta vertical bar < 2.5, in agreement with the expectations from Monte Carlo generators.

30 citations


Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2890 moreInstitutions (168)
TL;DR: In this paper, a measurement of the phi to K+K- production cross section at 7 TeV using pp collision data corresponding to an integrated luminosity of 383 mub-1, collected with the ATLAS experiment at the LHC.
Abstract: A measurement is presented of the phi to K+K- production cross section at sqrt(s) = 7 TeV using pp collision data corresponding to an integrated luminosity of 383 mub-1, collected with the ATLAS experiment at the LHC. Selection of phi(1020) mesons is based on the identification of charged kaons by their energy loss in the pixel detector. The differential cross section is measured as a function of the transverse momentum, pTphi, and rapidity, |yphi|, of the phi(1020) meson in the fiducial region 500 230 MeV and kaon momentum pK< 800 MeV.The integrated phi(1020)-meson production cross section in this fiducial range is measured to be s(phi K+K-) = 570 pm 8 (stat) pm 66 (syst) pm 20 (lumi) mub.

17 citations