scispace - formally typeset
J

J. A. Nowak

Researcher at Lancaster University

Publications -  291
Citations -  19346

J. A. Nowak is an academic researcher from Lancaster University. The author has contributed to research in topics: Neutrino & Neutrino oscillation. The author has an hindex of 63, co-authored 260 publications receiving 16207 citations. Previous affiliations of J. A. Nowak include University of Wrocław & University of Minnesota.

Papers
More filters
Journal ArticleDOI

Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam

K. Abe, +416 more
TL;DR: The T2K experiment observes indications of ν (μ) → ν(e) appearance in data accumulated with 1.43×10(20) protons on target, and under this hypothesis, the probability to observe six or more candidate events is 7×10(-3), equivalent to 2.5σ significance.
Journal ArticleDOI

Improved search for muon-neutrino to electron-neutrino oscillations in MINOS

P. Adamson, +117 more
TL;DR: The results of a search for ν(e) appearance in a ν (μ) beam in the MINOS long-baseline neutrino experiment find that 2 sin(2) (θ(23))sin(2)(2θ (13))<0.12 at 90% confidence level for δ = 0 and the normal (inverted) neutrinos mass hierarchy.
Journal ArticleDOI

The T2K Experiment

K. Abe, +536 more
TL;DR: The T2K experiment as discussed by the authors is a long-baseline neutrino oscillation experiment whose main goal is to measure the last unknown lepton sector mixing angle by observing its appearance in a particle beam generated by the J-PARC accelerator.
Posted Content

Light Sterile Neutrinos: A White Paper

Kevork N. Abazajian, +186 more
TL;DR: In this article, the authors address the hypothesis of light sterile neutrinos based on recent anomalies observed in neutrino experiments and the latest astrophysical data, and propose a white paper addressing this hypothesis.
Journal ArticleDOI

Significant Excess of ElectronLike Events in the MiniBooNE Short-Baseline Neutrino Experiment

TL;DR: The MiniBooNE data are consistent in energy and magnitude with the excess of events reported by the Liquid Scintillator Neutrino Detector (LSND), and the significance of the combined LSND and Mini BooNE excesses is 6.0σ.