scispace - formally typeset

Author

Giuseppe Iannaccone

Bio: Giuseppe Iannaccone is an academic researcher from University of Pisa. The author has contributed to research in topic(s): Field-effect transistor & Graphene. The author has an hindex of 45, co-authored 378 publication(s) receiving 10498 citation(s). Previous affiliations of Giuseppe Iannaccone include Istituto Nazionale di Fisica Nucleare & National Research Council.
Papers
More filters

Journal ArticleDOI
TL;DR: A review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches and the performance limits and advantages, when exploited for both digital and analog applications.
Abstract: The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.

2,038 citations


Journal ArticleDOI
Abstract: A set of design criteria for the radio-frequency (RF) section of long-range passive RF identification (RFID) transponders operating in the 2.45-GHz or 868-MHz industrial, scientific, and medical (ISM) frequency ranges is derived in this paper, focusing in particular on the voltage multiplier, the power-matching network, and the backscatter modulation. The paper discusses the design tradeoffs between the error probability at the reader receiver and the converted RF-dc power at the transponder, determining the regions of the design space that allow optimization of the operating range and the data rate of the RFID system.

402 citations


Journal ArticleDOI
Gianluca Fiori1, Giuseppe Iannaccone1Institutions (1)
Abstract: We present an atomistic 3-D simulation of graphene nanoribbon field-effect transistors (GNR-FETs), based on the self consistent solution of the 3-D Poisson and Schrodinger equations with open boundary conditions within the nonequilibrium Green's function formalism and a tight-binding Hamiltonian. With respect to carbon nanotube FETs, GNR-FETs exhibit comparable performance, reduced sensitivity to the variability of channel chirality, and similar leakage problems due to band-to-band tunneling. Acceptable transistor performance requires prohibitive effective nanoribbon width of 1-2 nm and atomistic precision that could in principle be obtained with periodic etch patterns or stress patterns.

318 citations


Journal ArticleDOI
TL;DR: A general approach to achieve inkjet-printable, water-based, two-dimensional crystal formulations, which also provide optimal film formation for multi-stack fabrication and in vitro dose-escalation cytotoxicity assays confirm the biocompatibility of the inks, extending their possible use to biomedical applications.
Abstract: Exploiting the properties of two-dimensional crystals requires a mass production method able to produce heterostructures of arbitrary complexity on any substrate. Solution processing of graphene allows simple and low-cost techniques such as inkjet printing to be used for device fabrication. However, the available printable formulations are still far from ideal as they are either based on toxic solvents, have low concentration, or require time-consuming and expensive processing. In addition, none is suitable for thin-film heterostructure fabrication due to the re-mixing of different two-dimensional crystals leading to uncontrolled interfaces and poor device performance. Here, we show a general approach to achieve inkjet-printable, water-based, two-dimensional crystal formulations, which also provide optimal film formation for multi-stack fabrication. We show examples of all-inkjet-printed heterostructures, such as large-area arrays of photosensors on plastic and paper and programmable logic memory devices. Finally, in vitro dose-escalation cytotoxicity assays confirm the biocompatibility of the inks, extending their possible use to biomedical applications. Device fabrication can be realized via inkjet printing of water-based 2D crystals.

313 citations


Journal ArticleDOI
01 Sep 2006
TL;DR: An extreme low power voltage reference generator operating with a supply voltage ranging from 0.9 to 4 V has been implemented in AMS 0.35-mum CMOS process, achieved as the combined effect of a perfect suppression of the temperature dependence of mobility and the compensation of the channel length modulation effect on the temperature coefficient.
Abstract: An extreme low power voltage reference generator operating with a supply voltage ranging from 0.9 to 4 V has been implemented in AMS 0.35-mum CMOS process. The maximum supply current measured at the maximum supply voltage and at 80degC is 70 nA. A temperature coefficient of 10 ppm/degC is achieved as the combined effect of 1) a perfect suppression of the temperature dependence of mobility; 2) the compensation of the channel length modulation effect on the temperature coefficient; and 3) the absence of the body effect. The power supply rejection ratio without any filtering capacitor at 100 Hz and 10 MHz is lower than -53 and -42 dB, respectively. The occupied chip area is 0.045 mm2.

243 citations


Cited by
More filters


Steven J. Plimpton1Institutions (1)
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

24,496 citations


Journal ArticleDOI
Abstract: The family of 2D transition metal carbides, carbonitrides and nitrides (collectively referred to as MXenes) has expanded rapidly since the discovery of Ti3C2 in 2011. The materials reported so far always have surface terminations, such as hydroxyl, oxygen or fluorine, which impart hydrophilicity to their surfaces. About 20 different MXenes have been synthesized, and the structures and properties of dozens more have been theoretically predicted. The availability of solid solutions, the control of surface terminations and a recent discovery of multi-transition-metal layered MXenes offer the potential for synthesis of many new structures. The versatile chemistry of MXenes allows the tuning of properties for applications including energy storage, electromagnetic interference shielding, reinforcement for composites, water purification, gas- and biosensors, lubrication, and photo-, electro- and chemical catalysis. Attractive electronic, optical, plasmonic and thermoelectric properties have also been shown. In this Review, we present the synthesis, structure and properties of MXenes, as well as their energy storage and related applications, and an outlook for future research. More than twenty 2D carbides, nitrides and carbonitrides of transition metals (MXenes) have been synthesized and studied, and dozens more predicted to exist. Highly electrically conductive MXenes show promise in electrical energy storage, electromagnetic interference shielding, electrocatalysis, plasmonics and other applications.

3,017 citations


Journal ArticleDOI
Jingsi Qiao1, Xianghua Kong1, Zhixin Hu1, Feng Yang1  +1 moreInstitutions (1)
TL;DR: A detailed theoretical investigation of the atomic and electronic structure of few-layer black phosphorus (BP) is presented to predict its electrical and optical properties, finding that the mobilities are hole-dominated, rather high and highly anisotropic.
Abstract: Two-dimensional crystals are emerging materials for nanoelectronics. Development of the field requires candidate systems with both a high carrier mobility and, in contrast to graphene, a sufficiently large electronic bandgap. Here we present a detailed theoretical investigation of the atomic and electronic structure of few-layer black phosphorus (BP) to predict its electrical and optical properties. This system has a direct bandgap, tunable from 1.51 eV for a monolayer to 0.59 eV for a five-layer sample. We predict that the mobilities are hole-dominated, rather high and highly anisotropic. The monolayer is exceptional in having an extremely high hole mobility (of order 10,000 cm(2) V(-1) s(-1)) and anomalous elastic properties which reverse the anisotropy. Light absorption spectra indicate linear dichroism between perpendicular in-plane directions, which allows optical determination of the crystalline orientation and optical activation of the anisotropic transport properties. These results make few-layer BP a promising candidate for future electronics.

3,004 citations


Book
Yuan Taur1, Tak H. Ning1Institutions (1)
01 Jan 2016
Abstract: Learn the basic properties and designs of modern VLSI devices, as well as the factors affecting performance, with this thoroughly updated second edition. The first edition has been widely adopted as a standard textbook in microelectronics in many major US universities and worldwide. The internationally-renowned authors highlight the intricate interdependencies and subtle tradeoffs between various practically important device parameters, and also provide an in-depth discussion of device scaling and scaling limits of CMOS and bipolar devices. Equations and parameters provided are checked continuously against the reality of silicon data, making the book equally useful in practical transistor design and in the classroom. Every chapter has been updated to include the latest developments, such as MOSFET scale length theory, high-field transport model, and SiGe-base bipolar devices.

2,655 citations


Network Information
Related Authors (5)
Gianluca Fiori

195 papers, 7.2K citations

96% related
David Esseni

278 papers, 5.8K citations

91% related
Luca Selmi

357 papers, 5.4K citations

91% related
Pierpaolo Palestri

269 papers, 3.7K citations

89% related
Enrico Sangiorgi

222 papers, 3.3K citations

88% related
Performance
Metrics

Author's H-index: 45

No. of papers from the Author in previous years
YearPapers
202110
202013
201911
201820
201717
20167