scispace - formally typeset
Search or ask a question

Showing papers by "Lin Mei published in 2008"


Journal ArticleDOI
TL;DR: An improved understanding of the mechanisms by which altered function of NRG1 and ErbB4 contributes to schizophrenia might eventually lead to the development of more effective therapeutics.
Abstract: Polymorphisms in the genes that encode neuregulin 1 (NRG1) and its receptor ErbB4 have been associated with schizophrenia. Mei and Xiong review the role of NRG1 signalling in neural development and synaptic plasticity and discuss how alterations in NRG1 signalling might contribute to schizophrenia. Schizophrenia is a highly debilitating mental disorder that affects ∼1% of the general population, yet it continues to be poorly understood. Recent studies have identified variations in several genes that are associated with this disorder in diverse populations, including those that encode neuregulin 1 (NRG1) and its receptor ErbB4. The past few years have witnessed exciting progress in our knowledge of NRG1 and ErbB4 functions and the biological basis of the increased risk for schizophrenia that is potentially conferred by polymorphisms in the two genes. An improved understanding of the mechanisms by which altered function of NRG1 and ErbB4 contributes to schizophrenia might eventually lead to the development of more effective therapeutics.

948 citations


Journal ArticleDOI
23 Oct 2008-Neuron
TL;DR: Observations indicate that LRP4 is a coreceptor of agrin that is necessary for MuSK signaling and AChR clustering and identify a potential target protein whose mutation and/or autoimmunization may cause muscular dystrophies.

474 citations


Journal ArticleDOI
TL;DR: Observations show a novel function of HMGB1 in osteoclastogenesis and provide a new link between inflammatory mechanisms and bone resorption.
Abstract: High-mobility group box 1 (HMGB1), a nonhistone nuclear protein, is released by macrophages into the extracellular milieu consequent to cellular activation. Extracellular HMGB1 has properties of a pro-inflammatory cytokine through its interaction with receptor for advanced glycation endproducts (RAGE) and/or toll-like receptors (TLR2 and TLR4). Although HMGB1 is highly expressed in macrophages and differentiating osteoclasts, its role in osteoclastogenesis remains largely unknown. In this report, we present evidence for a function of HMGB1 in this event. HMGB1 is released from macrophages in response to RANKL stimulation and is required for RANKL-induced osteoclastogenesis in vitro and in vivo. In addition, HMGB1, like other osteoclastogenic cytokines (e.g., TNFα), enhances RANKL-induced osteoclastogenesis in vivo and in vitro at subthreshold concentrations of RANKL, which alone would be insufficient. The role of HMGB1 in osteoclastogenesis is mediated, in large part, by its interaction with RAGE, an immunoglobin domain containing family receptor that plays an important role in osteoclast terminal differentiation and activation. HMGB1-RAGE signaling seems to be important in regulating actin cytoskeleton reorganization, thereby participating in RANKL-induced and integrin-dependent osteoclastogenesis. Taken together, these observations show a novel function of HMGB1 in osteoclastogenesis and provide a new link between inflammatory mechanisms and bone resorption.

143 citations


Journal ArticleDOI
TL;DR: Observations indicate a role for muscle β-catenin in presynaptic differentiation and function, identifying a previously unknown retrograde signaling in the synapse formation and synaptic plasticity.
Abstract: Synapse formation requires proper interaction between pre- and postsynaptic cells. In anterograde signaling, neurons release factors to guide postsynaptic differentiation. However, less is known about how postsynaptic targets retrogradely regulate presynaptic differentiation or function. We found that muscle-specific conditional knockout of beta-catenin (Ctnnb1, also known as beta-cat) in mice caused both morphologic and functional defects in motoneuron terminals of neuromuscular junctions (NMJs). In the absence of muscle beta-catenin, acetylcholine receptor clusters were increased in size and distributed throughout a wider region. Primary nerve branches were mislocated, whereas secondary or intramuscular nerve branches were elongated and reduced in number. Both spontaneous and evoked neurotransmitter release was reduced at the mutant NMJs. Furthermore, short-term plasticity and calcium sensitivity of neurotransmitter release were compromised in beta-catenin-deficient muscle. In contrast, the NMJ was normal in morphology and function in motoneuron-specific beta-catenin-deficient mice. Taken together, these observations indicate a role for muscle beta-catenin in presynaptic differentiation and function, identifying a previously unknown retrograde signaling in the synapse formation and synaptic plasticity.

135 citations


Journal ArticleDOI
TL;DR: It is demonstrated that NRG1/ErbB4 signaling differentially regulates synapse maturation and dendritic morphology via two distinct mechanisms involving trans-synaptic signaling and tyrosine kinase activity, respectively.

113 citations


Journal ArticleDOI
TL;DR: It is shown that β-catenin interacts directly with MyoD, a basic helix-loop-helix transcription factor essential for muscle differentiation and enhances its binding to E box elements and transcriptional activity.
Abstract: Wnt regulation of muscle development is thought to be mediated by the β-catenin-TCF/LEF-dependent canonical pathway. Here we demonstrate that β-catenin, not TCF/LEF, is required for muscle differentiation. We showed that β-catenin interacts directly with MyoD, a basic helix-loop-helix transcription factor essential for muscle differentiation and enhances its binding to E box elements and transcriptional activity. MyoD-mediated transactivation is inhibited in muscle cells when β-catenin is deficient or the interaction between MyoD and β-catenin is disrupted. These results demonstrate that β-catenin is necessary for MyoD function, identifying MyoD as an effector in the Wnt canonical pathway.

90 citations


Journal ArticleDOI
09 Oct 2008-Neuron
TL;DR: A role of HSP90beta is indicated in NMJ development by regulating rapsyn turnover and subsequent AChR cluster formation and maintenance by regulating its proteasome-dependent degradation.

76 citations


Journal ArticleDOI
TL;DR: It is shown in the adult hippocampus that long-term potentiation of transmission at Schaffer collateral CA1 synapses was markedly enhanced in mutant mice lacking ErbB4, suggesting that cognitive deficits in schizophrenia may be a consequence of hyperfunction of ErBB4 signaling leading to suppressed glutamatergic synaptic plasticity.
Abstract: ErbB4 has emerged as a leading susceptibility gene for schizophrenia but the function of the ErbB4 receptor in the adult brain is unknown. Here, we show in the adult hippocampus that long-term potentiation (LTP) of transmission at Schaffer collateral CA1 synapses was markedly enhanced in mutant mice lacking ErbB4. Concordantly, LTP was enhanced by acutely blocking ErbB4 in wild-type animals, indicating that ErbB4 activity constitutively suppresses LTP. Moreover, increasing ErbB4 signaling further suppressed LTP. By contrast, altering ErbB4 activity did not affect basal synaptic transmission or short-term facilitation. Our findings suggest that cognitive deficits in schizophrenia may be a consequence of hyperfunction of ErbB4 signaling leading to suppressed glutamatergic synaptic plasticity, thus opening new approaches for the treatment of this disorder.

71 citations


Journal ArticleDOI
TL;DR: This study demonstrated that MuSK became rapidly internalized in response to agrin, which appeared to be required for induced AChR clustering and provided evidence for a role of N-ethylmaleimide sensitive factor (NSF) in regulating MuSK endocytosis and subsequent signaling in responseto agrin stimulation.
Abstract: Agrin, a factor used by motoneurons to direct acetylcholine receptor (AChR) clustering at the neuromuscular junction, initiates signal transduction by activating the muscle-specific receptor tyrosine kinase (MuSK). However, the underlying mechanisms remain poorly defined. Here, we demonstrated that MuSK became rapidly internalized in response to agrin, which appeared to be required for induced AChR clustering. Moreover, we provided evidence for a role of N-ethylmaleimide sensitive factor (NSF) in regulating MuSK endocytosis and subsequent signaling in response to agrin stimulation. NSF interacts directly with MuSK with nanomolar affinity, and treatment of muscle cells with the NSF inhibitor N-ethylmaleimide, mutation of NSF, or suppression of NSF expression all inhibited agrin-induced AChR clustering. Furthermore, suppression of NSF expression and NSF mutation attenuate MuSK downstream signaling. Our study reveals a potentially novel mechanism that regulates agrin/MuSK signaling cascade.

47 citations


Journal ArticleDOI
TL;DR: Results indicate a role for α-actinin in AChR clustering and show that rapsyn, a scaffold protein essential for neuromuscular junction formation, interacts with α- actinin, a protein known to cross-link F-actIn, which form a ternary complex.
Abstract: AChR is concentrated at the postjunctional membrane at the neuromuscular junction. However, the underlying mechanism is unclear. We show that α-actinin, a protein known to cross-link F-actin, interacts with rapsyn, a scaffold protein essential for neuromuscular junction formation. α-Actinin, rapsyn, and surface AChR form a ternary complex. Moreover, the rapsyn-α-actinin interaction is increased by agrin, a factor known to stimulate AChR clustering. Downregulation of α-actinin expression inhibits agrin-mediated AChR clustering. Furthermore, the rapsyn-α-actinin interaction can be disrupted by inhibiting Abl and by cholinergic stimulation. Together these results indicate a role for α-actinin in AChR clustering.

46 citations


Journal ArticleDOI
TL;DR: A critical role is suggested for erbin in regulating dendritic morphogenesis by maintaining appropriate localization of δ-catenin in hippocampal neurons.
Abstract: The LAP [leucine-rich and postsynaptic density-95/Discs large/zona occludens-1 (PDZ)] protein erbin and δ-catenin, a component of the cadherin–catenin cell adhesion complex, are highly expressed in neurons and associate through PDZ-mediated interaction, but have incompletely characterized neuronal functions. We show that short hairpin RNA-mediated knockdown of erbin and knockdown or genetic ablation of δ-catenin severely impaired dendritic morphogenesis in hippocampal neurons. Simultaneous loss of erbin and δ-catenin does not enhance severity of this phenotype. The dendritic phenotype observed after erbin depletion is rescued by overexpression of δ-catenin and requires a domain in δ-catenin that has been shown to regulate dendritic branching. Knockdown of δ-catenin cannot be rescued by overexpression of erbin, indicating that erbin is upstream of δ-catenin. δ-Catenin-null neurons have no alterations in global levels of active Rac1/RhoA. Knockdown of erbin results in alterations in localization of δ-catenin. These results suggest a critical role for erbin in regulating dendritic morphogenesis by maintaining appropriate localization of δ-catenin.

Journal ArticleDOI
TL;DR: This paper shows that both DCC and neogenin become tyrosine phosphorylated in cortical neurons in response to netrin-1, and shows that inhibition of Src family kinase activity attenuated netin-1-induced neurite outgrowth.
Abstract: Deleted in colorectal cancer (DCC) and neogenin are receptors of netrins, a family of guidance cues that promote axon outgrowth and guide growth cones in developing nervous system. The intracellular mechanisms of netrins, however, remain elusive. In this paper, we show that both DCC and neogenin become tyrosine phosphorylated in cortical neurons in response to netrin-1. Using a site-specific antiphosphor DCC antibody, we show that Y1420 phosphorylation is increased in netrin-1-stimulated neurons and that tyrosine-phosphorylated DCC is located in growth cones. In addition, we show that tyrosine-phosphorylated DCC selectively interacts with the Src family kinases Fyn and Lck, but not Src, c-Abl, Grb2, SHIP1, Shc, or tensin, suggesting a role of Fyn or Lck in netrin-1-DCC signaling. Of interest to note is that tyrosine-phosphorylated neogenin and uncoordinated 5 H2 (Unc5H2) not only bind to the Src homology 2 (SH2) domains of Fyn and SHP2, but also interact with the SH2 domain of SHIP1, suggesting a differential signaling between DCC and neogenin/Unc5H2. Furthermore, we demonstrate that inhibition of Src family kinase activity attenuated netrin-1-induced neurite outgrowth. Together, these results suggest a role of Src family kinases and tyrosine phosphorylation of netrin-1 receptors in regulating netrin-1 function.

Journal ArticleDOI
TL;DR: Molecular Brain is a peer-reviewed, open-access online journal that aims at publishing high quality articles as rapidly as possible and will be a premier platform for neuroscientists to exchange their ideas with researchers from around the world to improve the understanding of the molecular mechanisms of the brain and mind.
Abstract: We are delighted to announce the arrival of a brand new journal dedicated to the ever-expanding field of neuroscience. Molecular Brain is a peer-reviewed, open-access online journal that aims at publishing high quality articles as rapidly as possible. The journal will cover a broad spectrum of neuroscience ranging from molecular/cellular to behavioral/cognitive neuroscience and from basic to clinical research. Molecular Brain will publish not only research articles, but also methodology articles, editorials, reviews, and short reports. It will be a premier platform for neuroscientists to exchange their ideas with researchers from around the world to help improve our understanding of the molecular mechanisms of the brain and mind.

Journal ArticleDOI
Qiang Wang1, Bin Zhang1, Ye Elaine Wang1, Wen Cheng Xiong1, Lin Mei1 
TL;DR: Results suggest that the Ig1/2 domain of MuSK is involved in AChR clustering by binding to the muscle surface, and recombinant proteins containing the binding activity can block full-length MuSK binding to muscle cells and agrin-induced AChr clustering.
Abstract: The neuromuscular junction, the synapse between motor neurons and muscle cells, serves as an excellent model for studying synapse formation. Agrin is believed to be released by motor neurons to induce postsynaptic differentiation at the neuromuscular junction. MuSK, a receptor tyrosine kinase, appears to be a key component of the agrin receptor complex. However, how agrin activates MuSK remains unclear. To address this question, we characterized the binding of the MuSK extracellular region to the muscle cell surface. The MuSK ectodomain was found to bind to muscle cells in a manner dependent on stimulation with neural agrin. Moreover, the binding was myotube specific and appeared to be mediated by two regions in the MuSK: one region containing the first and second immunoglobin domains and the other containing the cysteine-rich domain. Importantly, recombinant proteins containing the binding activity can block full-length MuSK binding to muscle cells and agrin-induced AChR clustering. These results suggest that the Ig1/2 domain of MuSK is involved in AChR clustering by binding to the muscle surface.

Patent
23 May 2008
TL;DR: In this article, the ErbB4 ligand can be either an agonist ligand or an antagonist ligand depending on the disorder to be treated and a preferred embodiment is provided.
Abstract: Methods and compositions for modulating GABA release in a subject are provided. A preferred embodiment provides a composition containing an effective amount of an ErbB4 ligand to enhance or promote GABA release, i.e., GABAergic transmission. The ErbB4 ligand can be an agonist ligand or an antagonist ligand depending on the disorder to be treated. Methods for treating neurological disorders are also provided. Representative disorders that can be treated include, but are not limited to schizophrenia, epilepsy, depression and anxiety, insomnia, stroke, pain, bipolar, autism, or a combination thereof. By increasing GABA release a sedative effective can be induced in the subject. Methods for inducing a stimulatory effect in a subject are also provided. In these methods, an effective amount of an ErbB4 antagonist ligand is administered to the subject to reduce or inhibit GABA release in the subject.

Patent
03 Nov 2008
TL;DR: In this paper, a method for diagnosing male infertility by determining the amount of netrin-1 in a sample of epididymal fluid or semen from a male subject, comparing the amount in the sample to levels in samples from fertile males is presented.
Abstract: Methods and compositions for male or female contraception are provided. The compositions include an effective amount of netrin-1 to reduce or inhibit sperm concentration in semen of males or to inhibit or reduce fusion of male gametes with female gametes in a female subject Still another embodiment provides a method for diagnosing male infertility by determining the amount of netrin-1 in a sample of epididymal fluid or semen from a male subject, comparing the amount of netting-1 in the sample to levels of netrin-1 in samples of epididymal fluid or semen from fertile males, wherein levels of netrin-1 in the sample from the male subject that are higher or lower than levels of netrin-1 in samples from fertile males are indicative of male infertility in the male subject.