scispace - formally typeset
P

Paul J. Crutzen

Researcher at Max Planck Society

Publications -  462
Citations -  87634

Paul J. Crutzen is an academic researcher from Max Planck Society. The author has contributed to research in topics: Stratosphere & Ozone. The author has an hindex of 130, co-authored 461 publications receiving 80651 citations. Previous affiliations of Paul J. Crutzen include University of Oxford & National Oceanic and Atmospheric Administration.

Papers
More filters
Journal ArticleDOI

Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze

TL;DR: The Indian Ocean Experiment (INDOEX) documented this Indo-Asian haze at scales ranging from individual particles to its contribution to the regional climate forcing as discussed by the authors, and integrated the multiplatform observations (satellites, aircraft, ships, surface stations, and balloons) with one-and four-dimensional models to derive the regional aerosol forcing resulting from the direct, the semidirect and the two indirect effects.
Journal ArticleDOI

N 2 O release from agro-biofuel production negates global warming reduction by replacing fossil fuels

TL;DR: In this paper, the relationship between the amount of N fixed by chemical, biological or atmospheric processes entering the terrestrial biosphere, and the total emission of nitrous oxide (N2O), has been re-examined, us- ing known global atmospheric removal rates and concentra- tion growth of N2O as a proxy for overall emissions.
Journal ArticleDOI

Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve a Policy Dilemma?

TL;DR: In this article, it is shown that the warming of earth by the increasing concentrations of CO2 and other greenhouse gases is partially countered by some backscattering to space of solar radiation by the sulfate particles, which act as cloud condensation nuclei and thereby influence the micro-physical and optical properties of clouds, affecting regional precipitation patterns, and increasing cloud albedo.
Journal ArticleDOI

Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning

TL;DR: In this paper, the authors estimated the global amounts of biomass which are affected by fires, and estimated an overall effect lof the biosphere on the atmospheric carbon dioxide budget which may range between the possibilities of a net uptake or a net release of about 2 Pg C/yr.