scispace - formally typeset
Search or ask a question

Showing papers by "Susumu Kobayashi published in 2021"


Journal ArticleDOI
TL;DR: In this paper, the authors identify that impaired minor spliceosome excision via ZRSR2 loss enhances hematopoietic stem cell self-renewal.
Abstract: Most eukaryotes harbor two distinct pre-mRNA splicing machineries: the major spliceosome, which removes >99% of introns, and the minor spliceosome, which removes rare, evolutionarily conserved introns. Although hypothesized to serve important regulatory functions, physiologic roles of the minor spliceosome are not well understood. For example, the minor spliceosome component ZRSR2 is subject to recurrent, leukemia-associated mutations, yet functional connections among minor introns, hematopoiesis and cancers are unclear. Here, we identify that impaired minor intron excision via ZRSR2 loss enhances hematopoietic stem cell self-renewal. CRISPR screens mimicking nonsense-mediated decay of minor intron-containing mRNA species converged on LZTR1, a regulator of RAS-related GTPases. LZTR1 minor intron retention was also discovered in the RASopathy Noonan syndrome, due to intronic mutations disrupting splicing and diverse solid tumors. These data uncover minor intron recognition as a regulator of hematopoiesis, noncoding mutations within minor introns as potential cancer drivers and links among ZRSR2 mutations, LZTR1 regulation and leukemias. Loss of function of the minor spliceosome component ZRSR2 enhances hematopoietic stem cell self-renewal through minor intron retention of its target LZTR1, which is a regulator of RAS-related GTPases. Minor intron retention of LZTR1 was also identified in Noonan syndrome and diverse solid tumor types.

42 citations


Journal ArticleDOI
24 Nov 2021-Nature
TL;DR: In this article, the authors identify a novel fusion transcript of CLIP1 and LTK using whole-transcriptome sequencing in a multi-institutional genome screening platform (LC-SCRUM-Asia, UMIN000036871).
Abstract: Lung cancer is one of the most aggressive tumour types. Targeted therapies stratified by oncogenic drivers have substantially improved therapeutic outcomes in patients with non-small-cell lung cancer (NSCLC)1. However, such oncogenic drivers are not found in 25–40% of cases of lung adenocarcinoma, the most common histological subtype of NSCLC2. Here we identify a novel fusion transcript of CLIP1 and LTK using whole-transcriptome sequencing in a multi-institutional genome screening platform (LC-SCRUM-Asia, UMIN000036871). The CLIP1–LTK fusion was present in 0.4% of NSCLCs and was mutually exclusive with other known oncogenic drivers. We show that kinase activity of the CLIP1–LTK fusion protein is constitutively activated and has transformation potential. Treatment of Ba/F3 cells expressing CLIP1–LTK with lorlatinib, an ALK inhibitor, inhibited CLIP1–LTK kinase activity, suppressed proliferation and induced apoptosis. One patient with NSCLC harbouring the CLIP1–LTK fusion showed a good clinical response to lorlatinib treatment. To our knowledge, this is the first description of LTK alterations with oncogenic activity in cancers. These results identify the CLIP1–LTK fusion as a target in NSCLC that could be treated with lorlatinib. Whole-transcriptome sequencing of a subset of 75 non-small-cell lung cancer specimens in a multi-institutional genome screening study identified a fusion of the CLIP1 and LTK genes with transformational potential due to constitutive LTK kinase activity.

26 citations


Journal ArticleDOI
TL;DR: In this article, the authors performed single-cell RNA-seq and singlecell ATAC-seq analyses to define the transcriptional and epigenetic landscape of parental cells, DTPs, and tumor cells in a fully resistant state.
Abstract: Tumor heterogeneity underlies resistance to tyrosine kinase inhibitors (TKI) in lung cancers harboring epidermal growth factor receptor (EGFR) mutations. Previous evidence suggested that subsets of preexisting resistant cells are selected by EGFR-TKI treatment, or alternatively, that diverse acquired resistance mechanisms emerge from drug-tolerant persister (DTP) cells. Many studies have used bulk tumor specimens or subcloned resistant cell lines to identify resistance mechanism. However, intratumoral heterogeneity can result in divergent responses to therapies, requiring additional approaches to reveal the complete spectrum of resistance mechanisms. Using EGFR-TKI-resistant cell models and clinical specimens, we performed single-cell RNA-seq and single-cell ATAC-seq analyses to define the transcriptional and epigenetic landscape of parental cells, DTPs, and tumor cells in a fully resistant state. In addition to AURKA, VIM, and AXL, which are all known to induce EGFR-TKI resistance, CD74 was identified as a novel gene that plays a critical role in the drug-tolerant state. In vitro and in vivo experiments demonstrated that CD74 upregulation confers resistance to the EGFR-TKI osimertinib and blocks apoptosis, enabling tumor regrowth. Overall, this study provides new insight into the mechanisms underlying resistance to EGFR-TKIs.

16 citations


Journal ArticleDOI
01 Mar 2021
TL;DR: This is one of the initial reports to characterize the novel EGFR TKI mobocertinib and highlights its broad activity against EGFR mutants plus the therapeutic window to EGFR exon 20 insertion mutations; as well as EGFR-C797S as a possible mechanism of resistance.
Abstract: Introduction EGFR exon 20 insertion mutations account for 10% of all EGFR mutations and are mostly insensitive to approved EGFR tyrosine kinase inhibitors (EGFR TKIs). Novel EGFR TKIs have been developed or repurposed for these mutants. A limited number of preclinical studies have detailed these EGFR TKIs. We sought to use commercially available mobocertinib (TAK-788) to characterize the preclinical therapeutic window of this EGFR TKI against EGFR mutations and to probe possible on-target mechanisms of resistance (EGFR-C797S). Methods We used models of EGFR mutations to probe representative first, second, third generation, and in-development EGFR exon 20-active (poziotinib, mobocertinib) TKIs. We also introduced EGFR-C797S to these models to identify mechanisms of resistance. Results Cells driven by the most common EGFR exon 20 insertion mutations (A767_V769dupASV, D770_N771insSVD, H773_V774insH, and others) were inhibited by in-development EGFR TKIs at doses below those affecting EGFR-wildtype; albeit more common EGFR mutations (exon 19 deletions and L858R) were inhibited more readily by mobocertinib and poziotinib. Mobocertinib was able to inhibit the phosphorylation of EGFR in multiple preclinical models. The presence of EGFR-C797S led to greater than 200-fold resistance in proliferation assays probing mobocertinib and osimertinib. A review of clinical studies of mobocertinib disclosed responses that could be lasting. Conclusions This is one of the initial reports to characterize the novel EGFR TKI mobocertinib and highlights its broad activity against EGFR mutants plus the therapeutic window to EGFR exon 20 insertion mutations; and EGFR-C797S as a possible mechanism of resistance. Further clinical development of mobocertinib merits continuation.

13 citations


Journal ArticleDOI
14 Oct 2021-Blood
TL;DR: In this paper, the authors investigated whether RNAs coordinate with transcription factors to drive myeloid gene transcription and identified the long noncoding RNA (lncRNA) originating from the upstream regulatory element of PU.1.

12 citations


Journal ArticleDOI
TL;DR: In this paper, an EGFR T790M-mutated NSCLC patient who had progressed after a third-generation EGFR-TKI, TAS-121, was subjected to a cell proliferation assay and western blotting analysis with EGFR mutations and a heat shock protein 90 (HSP90) inhibitor.
Abstract: Background Patients with non-small cell lung cancer (NSCLC) harboring activating EGFR mutations are sensitive to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) but inevitably develop resistance to the inhibitors mostly through acquisition of the secondary T790M mutation. Although third-generation EGFR-TKIs overcome this resistance by selectively inhibiting EGFR with EGFR-TKI-sensitizing and T790M mutations, acquired resistance to third-generation EGFR-TKIs invariably develops. Methods Next-generation sequencing (NGS) and fluorescence in situ hybridization (FISH) analysis were performed in an EGFR T790M-mutated NSCLC patient who had progressed after a third-generation EGFR-TKI, TAS-121. EGFR-mutated cell lines were subjected to a cell proliferation assay and western blotting analysis with EGFR-TKIs and a heat shock protein 90 (HSP90) inhibitor. Results NGS and FISH analysis revealed EGFR amplification in the resistant cancer cells. While EGFR L858R/T90M-mutated cell line was sensitive to osimertinib or TAS-121 in vitro, EGFR-overexpressing cell lines displayed resistance to these EGFR-TKIs. Western blot analysis showed that EGFR phosphorylation and overexpression of EGFR in cell lines was not suppressed by third-generation EGFR-TKIs. In contrast, an HSP90 inhibitor reduced total and phosphorylated EGFR and inhibited the proliferation of resistant cell lines. Conclusions EGFR amplification confers resistance to third-generation EGFR-TKIs which can be overcome by HSP90 inhibition. The results provide a preclinical rationale for the use of HSP90 inhibitors to overcome EGFR amplification-mediated resistance.

8 citations


Journal ArticleDOI
TL;DR: A case of a woman with advanced NSCLC treated with afatinib with sustained partial response for 20 months with manageable expected toxicities is reported, and the evolving spectrum of activity ascribed to osimertinib and newer EGFR inhibitors with a more favorable therapeutic window and intracranial penetration is summarized.
Abstract: The optimal management of advanced non-small cell lung cancer (NSCLC) with noncanonical epidermal growth factor receptor (EGFR) mutations (i.e., exon 19 deletion and exon 21 L858R) is constrained by the heterogeneous behavior of individual uncommon mutations and limited prospective clinical data in this setting. Despite encouraging results with osimertinib from a recently published phase II trial from South Korea, afatinib remains the only currently approved drug for patients with tumors harboring uncommon EGFR mutations (i.e., S768I, L861Q, and/or G719X). When used at the standard dose of 40 mg daily, afatinib is associated with significant rates of treatment-related adverse events, leading to frequent dose reductions and treatment discontinuations. We report a case of a woman with advanced NSCLC harboring EGFR-G719A mutation treated with afatinib (at an off-label pulse dose strategy that merits further evaluation in prospective studies) with sustained partial response for 20 months with manageable expected toxicities. Subsequent disease progression was mediated by off-target pan-EGFR inhibitor (including osimertinib)-resistant KRAS mutation and not by acquisition of EGFR-T790M. We further present the current state of evidence in the literature behind use of first-, second-, and third-generation tyrosine kinase inhibitors and summarize the evolving spectrum of activity ascribed to osimertinib (and newer EGFR inhibitors with a more favorable therapeutic window and intracranial penetration) in this population of patients with advanced NSCLC and uncommon EGFR mutations. KEY POINTS: Uncommon EGFR mutations characterize a heterogeneous group of patients with advanced non-small cell lung cancer (NSCLC). Afatinib is the only currently U.S. Food and Drug Administration-approved drug for management of advanced NSCLC with uncommon EGFR mutations (S768I, L861Q, and/or G719X). Afatinib treatment at 40 mg daily is associated with high rates of adverse events and dose reductions; alternative strategies including pulse intermittent dosing should be evaluated prospectively. Osimertinib (with favorable safety profile and intracranial penetration) has shown promising results in this population in a phase II trial from South Korea; additional trials are ongoing.

8 citations


Journal ArticleDOI
TL;DR: In this article, the one-pot biomimetic synthesis of chloropupukeananin and chloropukeanolide D was reported, and the effect of the solvent on the intermolecular Diels-Alder reaction of siccayne and maldoxin suggested that the biosynthesis of the chloropusananin family involves a DielsAlderase-catalyzed heterodimeric Diels Alder reaction.
Abstract: Chloropupukeananin, chloropupukeanolides, and chloropestolides are a family of structurally complex bioactive natural products that possess highly functionalized tricyclo[4.3.1.03,7]decane or bicyclo[2.2.2]octane skeletons. Biosynthesis of the chloropupukeananin family is triggered by the intermolecular heterodimeric Diels-Alder reaction between maldoxin and iso-A82775C; however, the enzymes involved have not yet been identified. We herein report the one-pot biomimetic synthesis of chloropupukeananin and chloropupukeanolide D. Moreover, the effect of the solvent on the intermolecular Diels-Alder reaction of siccayne and maldoxin suggested that the biosynthesis of the chloropupukeananin family involves a Diels-Alderase-catalyzed heterodimeric Diels-Alder reaction.

7 citations


Journal ArticleDOI
02 Nov 2021-Cells
TL;DR: In this article, the authors demonstrate that NAD-promoted ADP-ribosylation leads to demethylation and transcriptional activation of the CEBPA gene, suggesting the existence of an unknown NAD-controlled region within the locus.
Abstract: Nutritional intake impacts the human epigenome by directing epigenetic pathways in normal cell development via as yet unknown molecular mechanisms. Consequently, imbalance in the nutritional intake is able to dysregulate the epigenetic profile and drive cells towards malignant transformation. Here we present a novel epigenetic effect of the essential nutrient, NAD. We demonstrate that impairment of DNMT1 enzymatic activity by NAD-promoted ADP-ribosylation leads to demethylation and transcriptional activation of the CEBPA gene, suggesting the existence of an unknown NAD-controlled region within the locus. In addition to the molecular events, NAD- treated cells exhibit significant morphological and phenotypical changes that correspond to myeloid differentiation. Collectively, these results delineate a novel role for NAD in cell differentiation, and indicate novel nutri-epigenetic strategies to regulate and control gene expression in human cells.

7 citations


Journal ArticleDOI
TL;DR: In this paper, an integrative omics analysis of paired tumor samples from a patient with transdifferentiated SCLC exhibited robust upregulation of FGF9 at the protein level in four of six (66.7%) paired samples.
Abstract: Transdifferentiation of lung adenocarcinoma to small cell lung cancer (SCLC) has been reported in a subset of lung cancer cases that bear EGFR mutations. Several studies have reported the prerequisite role of TP53 and RB1 alterations in transdifferentiation. However, the mechanism underlying transdifferentiation remains understudied, and definitive additional events, the third hit, for transdifferentiation have not yet been identified. In addition, no prospective experiments provide direct evidence for transdifferentiation. In this study, we show that FGF9 upregulation plays an essential role in transdifferentiation. An integrative omics analysis of paired tumor samples from a patient with transdifferentiated SCLC exhibited robust upregulation of FGF9. Furthermore, FGF9 upregulation was confirmed at the protein level in four of six (66.7%) paired samples. FGF9 induction transformed mouse lung adenocarcinoma-derived cells to SCLC-like tumors in vivo through cell autonomous activation of the FGFR pathway. In vivo treatment of transdifferentiated SCLC-like tumors with the pan-FGFR inhibitor AZD4547 inhibited growth. In addition, FGF9 induced neuroendocrine differentiation, a pathologic characteristic of SCLC, in established human lung adenocarcinoma cells. Thus, the findings provide direct evidence for FGF9-mediated SCLC transdifferentiation and propose the FGF9-FGFR axis as a therapeutic target for transdifferentiated SCLC. SIGNIFICANCE: This study demonstrates that FGF9 plays a role in the transdifferentiation of lung adenocarcinoma to small cell lung cancer.

6 citations


Journal ArticleDOI
TL;DR: In this article, the effect of Epo-C12 on peroxiredoxin 1 (Prx 1), one of the proteins that binds to EpoC12, was investigated.

Journal ArticleDOI
01 Mar 2021
TL;DR: The preclinical differences in the inhibitory profiles of these two mutations eloquently highlighted the need for the development of more potent MET inhibitors with an enhanced pattern of activity against MET kinase domain mutations.
Abstract: To the Editor: We thank Drs. Fujino and Mitsudomi for their interest in our description of MET mutations as a mechanism of resistance to dual EGFR-MET inhibition in EGFR-mutated plus MET-amplified lung cancer. The ongoing approvals and late-stage development of multiple type I MET tyrosine kinase inhibitors— such as capmatinib, tepotinib, savolitinib, and crizotinib—have paved the way for the use of these therapies in the clinical care of patients with tumors driven by MET aberrations. However, the widespread use of type I MET inhibitors will also highlight the inherited vulnerability of tumor adaptation mediated by on-target resistance through MET kinase domain mutations, including METD1228X and MET-Y1230X mutations. Some type II MET inhibitors (i.e., cabozantinib, merestinib, and glesatinib) have preclinical activity against MET-amplified tumors co-harboring MET-D1228X or MET-Y1230X mutations. Fujino and Mitusudomi eloquently highlighted the preclinical differences in the inhibitory profiles of these two mutations and pointed toward the need for the development of more potent MET inhibitors with an enhanced pattern of activity against MET kinase domain mutations.