scispace - formally typeset
Search or ask a question

Showing papers in "Cancer Research in 2021"


Journal ArticleDOI
TL;DR: The role of macrophages in solid tumors, the progress made withmacrophage-focused immunotherapeutic modalities, and the emergence of chimeric antigen receptor macrophage cell therapy are highlighted.
Abstract: Adoptive cell therapy with genetically modified T cells has generated exciting outcomes in hematologic malignancies, but its application to solid tumors has proven challenging. This gap has spurred the investigation of alternative immune cells as therapeutics. Macrophages are potent immune effector cells whose functional plasticity leads to antitumor as well as protumor function in different settings, and this plasticity has led to notable efforts to deplete or repolarize tumor-associated macrophages. Alternatively, macrophages could be adoptively transferred after ex vivo genetic modification. In this review, we highlight the role of macrophages in solid tumors, the progress made with macrophage-focused immunotherapeutic modalities, and the emergence of chimeric antigen receptor macrophage cell therapy.

234 citations


Journal ArticleDOI
TL;DR: The results demonstrate the oncogenic role of YTHDF1 and its m6A-mediated regulation of Wnt/β-catenin signaling in gastric cancer, providing a novel approach of targeting such epigenetic regulators in this disease.
Abstract: N6-methyladenosine (m6A) is the most prevalent internal RNA modification in mammals that regulates homeostasis and function of modified RNA transcripts. Here, we aimed to investigate the role of YTH m6A RNA-binding protein 1 (YTHDF1), a key regulator of m6A methylation in gastric cancer tumorigenesis. Multiple bioinformatic analyses of different human cancer databases identified key m6A-associated genetic mutations that regulated gastric tumorigenesis. YTHDF1 was mutated in about 7% of patients with gastric cancer, and high expression of YTHDF1 was associated with more aggressive tumor progression and poor overall survival. Inhibition of YTHDF1 attenuated gastric cancer cell proliferation and tumorigenesis in vitro and in vivo. Mechanistically, YTHDF1 promoted the translation of a key Wnt receptor frizzled7 (FZD7) in an m6A-dependent manner, and mutated YTHDF1 enhanced expression of FZD7, leading to hyperactivation of the Wnt/β-catenin pathway and promotion of gastric carcinogenesis. Our results demonstrate the oncogenic role of YTHDF1 and its m6A-mediated regulation of Wnt/β-catenin signaling in gastric cancer, providing a novel approach of targeting such epigenetic regulators in this disease. SIGNIFICANCE: This study provides a rationale for controlling translation of key oncogenic drivers in cancer by manipulating epigenetic regulators, representing a novel and efficient strategy for anticancer treatment. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/10/2651/F1.large.jpg.

129 citations


Journal ArticleDOI
TL;DR: In this article, the potential of erastin or RSL3 independently and in combination with standard-of-care second-generation antiandrogens as novel therapeutic strategies for advanced prostate cancer was explored.
Abstract: Ferroptosis is a type of programmed cell death induced by the accumulation of lipid peroxidation and lipid reactive oxygen species in cells. It has been recently demonstrated that cancer cells are vulnerable to ferroptosis inducers (FIN). However, the therapeutic potential of FINs in prostate cancer in preclinical settings has not been explored. In this study, we demonstrate that mediators of ferroptosis, solute carrier family 7 member 11, SLC3A2, and glutathione peroxidase, are expressed in treatment-resistant prostate cancer. We further demonstrate that treatment-resistant prostate cancer cells are sensitive to two FINs, erastin and RSL3. Treatment with erastin and RSL3 led to a significant decrease in prostate cancer cell growth and migration in vitro and significantly delayed the tumor growth of treatment-resistant prostate cancer in vivo, with no measurable side effects. Combination of erastin or RSL3 with standard-of-care second-generation antiandrogens for advanced prostate cancer halted prostate cancer cell growth and migration in vitro and tumor growth in vivo. These results demonstrate the potential of erastin or RSL3 independently and in combination with standard-of-care second-generation antiandrogens as novel therapeutic strategies for advanced prostate cancer. SIGNIFICANCE: These findings reveal that induction of ferroptosis is a new therapeutic strategy for advanced prostate cancer as a monotherapy and in combination with second-generation antiandrogens.

97 citations


Journal ArticleDOI
TL;DR: Small-molecule activators of METTL3, as well as inhibitors of MET TL3, FTO, ALKBH5, and IGF2BP1 have recently been identified and have shown considerable anticancer effects when administered alone or in combination with other anticancer agents, both in vitro and in mouse models of human cancers.
Abstract: RNA N6 -methyladenosine (m6A) modification occurs in approximately 25% of mRNAs at the transcriptome-wide level. RNA m6A is regulated by the RNA m6A methyltransferases methyltransferase-like 3 (METTL3), METTL14, and METTL16 (writers), demethylases FTO and ALKBH5 (erasers), and binding proteins YTHDC1-2, YTHDF1-3, IGF2BP1-3, and SND1 (readers). These RNA m6A modification proteins are frequently upregulated or downregulated in human cancer tissues and are often associated with poor patient prognosis. By modulating pre-mRNA splicing, mRNA nuclear export, decay, stability, and translation of oncogenic and tumor suppressive transcripts, RNA m6A modification proteins regulate cancer cell proliferation, survival, migration, invasion, tumor initiation, progression, metastasis, and sensitivity to anticancer therapies. Importantly, small-molecule activators of METTL3, as well as inhibitors of METTL3, FTO, ALKBH5, and IGF2BP1 have recently been identified and have shown considerable anticancer effects when administered alone or in combination with other anticancer agents, both in vitro and in mouse models of human cancers. Future compound screening and design of more potent and selective RNA m6A modification protein inhibitors and activators are expected to provide novel anticancer agents, appropriate for clinical trials in patients with cancer tissues harboring aberrant RNA m6A modification protein expression or RNA m6A modification protein-induced resistance to cancer therapy.

95 citations


Journal ArticleDOI
TL;DR: The results support the existence of a platinum-tolerant cell population with partial cancer stem cell features, characterized by FZD7 expression and dependent on the FzD7–β-catenin–Tp63–GPX4 pathway for survival.
Abstract: Defining traits of platinum-tolerant cancer cells could expose new treatment vulnerabilities. Here, new markers associated with platinum-tolerant cells and tumors were identified using in vitro and in vivo ovarian cancer models treated repetitively with carboplatin and validated in human specimens. Platinum-tolerant cells and tumors were enriched in ALDH+ cells, formed more spheroids, and expressed increased levels of stemness-related transcription factors compared with parental cells. Additionally, platinum-tolerant cells and tumors exhibited expression of the Wnt receptor Frizzled-7 (FZD7). Knockdown of FZD7 improved sensitivity to platinum, decreased spheroid formation, and delayed tumor initiation. The molecular signature distinguishing FZD7+ from FZD7- cells included epithelial-to-mesenchymal (EMT), stemness, and oxidative phosphorylation-enriched gene sets. Overexpression of FZD7 activated the oncogenic factor Tp63, driving upregulation of glutathione metabolism pathways, including glutathione peroxidase 4 (GPX4), which protected cells from chemotherapy-induced oxidative stress. FZD7+ platinum-tolerant ovarian cancer cells were more sensitive and underwent ferroptosis after treatment with GPX4 inhibitors. FZD7, Tp63, and glutathione metabolism gene sets were strongly correlated in the ovarian cancer Tumor Cancer Genome Atlas (TCGA) database and in residual human ovarian cancer specimens after chemotherapy. These results support the existence of a platinum-tolerant cell population with partial cancer stem cell features, characterized by FZD7 expression and dependent on the FZD7-β-catenin-Tp63-GPX4 pathway for survival. The findings reveal a novel therapeutic vulnerability of platinum-tolerant cancer cells and provide new insight into a potential "persister cancer cell" phenotype. SIGNIFICANCE: Frizzled-7 marks platinum-tolerant cancer cells harboring stemness features and altered glutathione metabolism that depend on GPX4 for survival and are highly susceptible to ferroptosis.

87 citations


Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper reported ALKBH5 as an important m6A demethylase that orchestrates PD-L1 expression in intrahepatic cholangiocarcinoma (ICC).
Abstract: N6-methyladenosine (m6A) has been reported as an important mechanism of posttranscriptional regulation. Programmed death-ligand 1 (PD-L1) is a primary immune inhibitory molecule expressed on tumor cells that promotes immune evasion. Here we report ALKBH5 as an important m6A demethylase that orchestrates PD-L1 expression in intrahepatic cholangiocarcinoma (ICC). Regulation of PD-L1 expression by ALKBH5 was confirmed in human ICC cell lines. Sequencing of the m6A methylome identified PD-L1 mRNA as a direct target of m6A modification whose levels were regulated by ALKBH5. Furthermore, ALKBH5 and PD-L1 mRNA were shown to interact. ALKBH5 deficiency enriched m6A modification in the 3′UTR region of PD-L1 mRNA, thereby promoting its degradation in a YTHDF2-dependent manner. In vitro and in vivo, tumor-intrinsic ALKBH5 inhibited the expansion and cytotoxicity of T cells by sustaining tumor cell PD-L1 expression. The ALKBH5-PD-L1–regulating axis was further confirmed in human ICC specimens. Single-cell mass cytometry analysis unveiled a complex role of ALKBH5 in the tumor immune microenvironment by promoting the expression of PD-L1 on monocytes/macrophages and decreasing the infiltration of myeloid-derived suppressor-like cells. Analysis of specimens from patients receiving anti-PD1 immunotherapy suggested that tumors with strong nuclear expression patterns of ALKBH5 are more sensitive to anti-PD1 immunotherapy. Collectively, these results describe a new regulatory mechanism of PD-L1 by mRNA epigenetic modification by ALKBH5 and the potential role of ALKBH5 in immunotherapy response, which might provide insights for cancer immunotherapies. Significance: This study identifies PD-L1 mRNA as a target of ALKBH5 and reveals a role for ALKBH5 in regulating the tumor immune microenvironment and immunotherapy efficacy.

85 citations


Proceedings ArticleDOI
TL;DR: Diverse genomic and histologic mechanisms impart resistance to covalent KRASG12C inhibitors in patients with cancer, suggesting potential therapeutic strategies for overcoming drug resistance to specific mutations.
Abstract: Background: KRAS glycine-to-cysteine amino acid substitutions at codon 12 (KRASG12C) occur in ~13% of non-small cell lung cancers (NSCLC), ~3% of colorectal cancers (CRC), and less commonly in other cancer types. In early phase clinical trials of patients with KRASG12C-mutant cancers, promising antitumor activity has been reported with drugs such as adagrasib (MRTX849) and sotorasib (AMG510) which are direct inhibitors of KRASG12C. These small molecule irreversible inhibitors bind covalently to cysteine 12 within the switch II pocket which is formed, in part, by residues H95, Y96, and Q99. Mechanisms of acquired resistance to these therapies are currently unknown. Methods: Patients with KRASG12C-mutant NSCLC and CRC who were enrolled on adagrasib clinical trials and developed subsequent disease progression were included in this study if they were also consented to institutional review board-approved correlative studies at participating institutions. Tissue biopsies were analyzed histologically; tumor and/or circulating tumor DNA samples underwent next generation sequencing at the time of disease progression which was compared to that from pre-treatment samples when available. Results: A total of 30 patients were included in this study, 23 with NSCLC and 7 with CRC (25 with ctDNA, 7 with tissue sequencing, 2 with both). At the time of acquired resistance to adagrasib, we observed multiple on-target acquired KRAS alterations: mutations of the covalent-binding C12 residue, including C12W, C12F, C12V; a KRAS G13D mutation; high-level amplification of the KRASG12C allele; and mutation of the switch II binding pocket residues R68S, H95D, H95R, and Y96C. Furthermore, we detected several acquired off-target bypass mechanisms of resistance such as EGFR or MET amplification; activating mutations in NRAS (Q61K), BRAF (V600E), MAP2K1 (K57N, I99_K104del, E102_I103del), and RET (M918T); and oncogenic fusions involving RET, BRAF, RAF1, and FGFR. In two NSCLC cases with repeat tissue biopsies, histologic transformation from lung adenocarcinoma to squamous cell carcinoma was observed with no identifiable genomic mechanism of acquired resistance. In several cases, multiple coincident resistance mechanisms were identified in the same patient. Deep scanning mutagenesis studies were performed in parallel and identified the landscape of resistance mutations to adagrasib and sotorasib. While most resistance mutations confer high-level resistance to both therapies, some second-site mutations display differential sensitivity to distinct KRASG12C inhibitors, suggesting potential therapeutic strategies for overcoming drug resistance to specific mutations. Conclusion: Diverse genomic and histologic mechanisms impart resistance to covalent KRASG12C inhibitors in patients with cancer. Acquired genomic mutations, amplifications, and rearrangements may be potentially targetable by combining KRASG12C inhibition with available kinase inhibitors or SHP2 inhibitors. Citation Format: Mark Awad, Shengwu Liu, Kathryn Arbour, Viola Zhu, Melissa Johnson, Rebecca Heist, Tejas Patil, Gregory Riely, Joseph Jacobson, Julien Dilly, Xiaoping Yang, Nicole Persky, David Root, Lynette Sholl, Lee Lim, Kavita Garg, Mark Li, Lars Engstrom, Laura Waters, J. David Lawson, Peter Olson, James Christensen, Piro Lito, Sai-Hong Inatius Ou, Pasi Janne, Andrew Aguirre. Mechanisms of acquired resistance to KRAS G12C inhibition in cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr LB002.

83 citations


Journal ArticleDOI
TL;DR: A novel immune therapeutic approach targeting human TAMs immune suppression of NK- and T-cell antitumor activities is demonstrated, resulting in recovered cytolytic activity and antitumoral capacity of NK cells and T cells and downmodulated Treg cell activities.
Abstract: The progression and metastatic capacity of solid tumors are strongly influenced by immune cells in the tumor microenvironment. In non-small cell lung cancer (NSCLC), accumulation of anti-inflammatory tumor-associated macrophages (TAM) is associated with worse clinical outcome and resistance to therapy. Here we investigated the immune landscape of NSCLC in the presence of protumoral TAMs expressing the macrophage receptor with collagenous structure (MARCO). MARCO-expressing TAM numbers correlated with increased occurrence of regulatory T cells and effector T cells and decreased natural killer (NK) cells in these tumors. Furthermore, transcriptomic data from the tumors uncovered a correlation between MARCO expression and the anti-inflammatory cytokine IL37. In vitro studies subsequently showed that lung cancer cells polarized macrophages to express MARCO and gain an immune-suppressive phenotype through the release of IL37. MARCO-expressing TAMs blocked cytotoxic T-cell and NK-cell activation, inhibiting their proliferation, cytokine production, and tumor killing capacity. Mechanistically, MARCO+ macrophages enhanced regulatory T (Treg) cell proliferation and IL10 production and diminished CD8 T-cell activities. Targeting MARCO or IL37 receptor (IL37R) by antibody or CRISPR knockout of IL37 in lung cancer cell lines repolarized TAMs, resulting in recovered cytolytic activity and antitumoral capacity of NK cells and T cells and downmodulated Treg cell activities. In summary, our data demonstrate a novel immune therapeutic approach targeting human TAMs immune suppression of NK- and T-cell antitumor activities. SIGNIFICANCE: This study defines tumor-derived IL37 and the macrophage scavenger receptor MARCO as potential therapeutic targets to remodel the immune-suppressive microenvironment in patients with lung cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/4/956/F1.large.jpg.

80 citations


Journal ArticleDOI
TL;DR: The findings reveal that DMDRMR cooperates with IGF2BP3 to regulate target genes in an m6A-dependent manner and may represent a potential diagnostic, prognostic, and therapeutic target in ccRCC.
Abstract: Aberrant N6-methyladenosine (m6A) modification has emerged as a driver of tumor initiation and progression, yet how long noncoding RNAs (lncRNA) are involved in the regulation of m6A remains unknown. Here we utilize data from 12 cancer types from The Cancer Genome Atlas to comprehensively map lncRNAs that are potentially deregulated by DNA methylation. A novel DNA methylation–deregulated and RNA m6A reader–cooperating lncRNA (DMDRMR) facilitated tumor growth and metastasis in clear cell renal cell carcinoma (ccRCC). Mechanistically, DMDRMR bound insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) to stabilize target genes, including the cell-cycle kinase CDK4 and three extracellular matrix components (COL6A1, LAMA5, and FN1), by specifically enhancing IGF2BP3 activity on them in an m6A-dependent manner. Consequently, DMDRMR and IGF2BP3 enhanced the G1–S transition, thus promoting cell proliferation in ccRCC. In patients with ccRCC, high coexpression of DMDRMR and IGF2BP3 was associated with poor outcomes. Our findings reveal that DMDRMR cooperates with IGF2BP3 to regulate target genes in an m6A-dependent manner and may represent a potential diagnostic, prognostic, and therapeutic target in ccRCC. Significance: This study demonstrates that the lncRNA DMDRMR acts as a cofactor for IGF2BP3 to stabilize target genes in an m6A-dependent manner, thus exerting essential oncogenic roles in ccRCC.

71 citations


Proceedings ArticleDOI
TL;DR: Kalinsky et al. as mentioned in this paper showed that the potential prognostic and predictive role of recurrence score (RS) for CT benefit in postmenopausal patients with HR+, HER2-, axillary lymph node (LN)-negative BC.
Abstract: Funding: Supported by National Cancer Institute grants U10CA180888, U10CA180819, U10CA180820, U10CA180821, U10CA180868, U10CA180863; and in part by Susan G. Komen for the Cure® Research Program, The Hope Foundation for Cancer Research, Breast Cancer Research Foundation, and Genomic Health, Inc. Acknowledgement: The authors wish to thank Dr. Ana M. Gonzalez-Angulo, MD, for her invaluable contributions to the design and implementation of this study. Background: The clinical utility of the RS to determine CT benefit is well established in pts with HR+, HER2-, axillary lymph node (LN)-negative BC. Retrospective analyses from SWOG S8814 support the potential prognostic and predictive role of RS for CT benefit in postmenopausal pts with LN+ BC. SWOG S1007 is a prospective, randomized trial of endocrine therapy (ET) vs. chemoendocrine therapy (CET) in women with 1-3 +LN and a RS 18 years of age with HR+, HER2- BC and 1-3 +LN and no contraindications to taxane and/or anthracycline based CT. Women with a RS Citation Format: Kevin Kalinsky, William E Barlow, Funda Meric-Bernstam, Julie R Gralow, Kathy S Albain, Daniel Hayes, Nancy Lin, Edith A Perez, Lori J Goldstein, Stephen Chia, Subkhbinder Dhesy-Thind, Priya Rastogi, Emilio Alba, Suzette Delaloge, Miguel Martin, Miguel Gil Gil, Claudia Arce-Salinas, Etienne Brain, In Hae Park, Jean-Yves Pierga, Ana Hernandez Lluch, Manuel Ramos Vasquez, Manuel Ruiz Borrego, Kyung Hae Jung, Jean-Marc Ferrero, Anne Schott, Steve Shak, Priyanka Sharma, Danika L Lew, Jieling Miao, Debu Tripathy, Gabriel Hortobagyi, Lajos Pusztai. First results from a phase III randomized clinical trial of standard adjuvant endocrine therapy (ET) +/- chemotherapy (CT) in patients (pts) with 1-3 positive nodes, hormone receptor-positive (HR+) and HER2-negative (HER2-) breast cancer (BC) with recurrence score (RS)

63 citations


Journal ArticleDOI
TL;DR: In this article, the authors highlight recent discoveries regarding mechanisms contributing to nerve-cancer crosstalk and the effects of nerve cancer on tumor progression and dissemination and highlight effective targets for the inhibition of tumor-induced neurogenesis and tumor progression.
Abstract: In this review, we highlight recent discoveries regarding mechanisms contributing to nerve-cancer crosstalk and the effects of nerve-cancer crosstalk on tumor progression and dissemination. High intratumoral nerve density correlates with poor prognosis and high recurrence across multiple solid tumor types. Recent research has shown that cancer cells express neurotrophic markers such as nerve growth factor, brain-derived neurotrophic factor, and glial cell-derived neurotrophic factor and release axon guidance molecules such as Ephrin B1 to promote axonogenesis. Tumor cells recruit new neural progenitors to the tumor milieu and facilitate their maturation into adrenergic infiltrating nerves. Tumors also rewire established nerves to adrenergic phenotypes via exosome-induced neural reprogramming by p53-deficient tumors. In turn, infiltrating sympathetic nerves facilitate cancer progression. Intratumoral adrenergic nerves release noradrenaline to stimulate angiogenesis via vascular endothelial growth factor signaling and enhance the rate of tumor growth. Intratumoral parasympathetic nerves may have a dichotomous role in cancer progression and may induce Wnt-β-catenin signals that expand cancer stem cells. Importantly, infiltrating nerves not only influence the tumor cells themselves but also impact other cells of the tumor stroma. This leads to enhanced sympathetic signaling and glucocorticoid production, which influences neutrophil and macrophage differentiation, lymphocyte phenotype, and potentially lymphocyte function. Although much remains unexplored within this field, fundamental discoveries underscore the importance of nerve-cancer crosstalk to tumor progression and may provide the foundation for developing effective targets for the inhibition of tumor-induced neurogenesis and tumor progression.

Journal ArticleDOI
TL;DR: In this paper, the authors uncover a MYCN-dependent therapeutic vulnerability in neuroblastoma, showing that myCN increases intracellular iron levels and subsequent GSH pathway activity and demonstrates the antitumor activity of FDA-approved rheumatoid arthritis drugs sulfasalazine (SAS) and auranofin in patient-derived xenograft models of mycoblastoma multiforme cancer.
Abstract: MYCN is amplified in 20% to 25% of neuroblastoma, and MYCN-amplified neuroblastoma contributes to a large percent of pediatric cancer-related deaths. Therapy improvements for this subtype of cancer are a high priority. Here we uncover a MYCN-dependent therapeutic vulnerability in neuroblastoma. Namely, amplified MYCN rewires the cell through expression of key receptors, ultimately enhancing iron influx through increased expression of the iron import transferrin receptor 1. Accumulating iron causes reactive oxygen species (ROS) production, and MYCN-amplified neuroblastomas show enhanced reliance on the system Xc- cystine/glutamate antiporter for ROS detoxification through increased transcription of this receptor. This dependence creates a marked vulnerability to targeting the system Xc-/glutathione (GSH) pathway with ferroptosis inducers. This reliance can be exploited through therapy with FDA-approved rheumatoid arthritis drugs sulfasalazine (SAS) and auranofin: in MYCN-amplified, patient-derived xenograft models, both therapies blocked growth and induced ferroptosis. SAS and auranofin activity was largely mitigated by the ferroptosis inhibitor ferrostatin-1, antioxidants like N-acetyl-L-cysteine, or by the iron scavenger deferoxamine (DFO). DFO reduced auranofin-induced ROS, further linking increased iron capture in MYCN-amplified neuroblastoma to a therapeutic vulnerability to ROS-inducing drugs. These data uncover an oncogene vulnerability to ferroptosis caused by increased iron accumulation and subsequent reliance on the system Xc-/GSH pathway. SIGNIFICANCE: This study shows how MYCN increases intracellular iron levels and subsequent GSH pathway activity and demonstrates the antitumor activity of FDA-approved SAS and auranofin in patient-derived xenograft models of MYCN-amplified neuroblastoma.

Journal ArticleDOI
TL;DR: In this article, a herpes simplex 1-based OV-expressing human IL15/IL15Rα sushi domain fusion protein (OV-IL15C), as well as off-the-shelf EGFR-CAR NK cells, were studied in vitro and in multiple glioblastoma (GBM) mouse models.
Abstract: IL15 is a pleiotropic cytokine with multiple roles that improve immune responses to tumor cells. Oncolytic viruses (OV) specifically lyse tumors and activate immune responses. Systemic administration of IL15 or its complex with the IL15Rα and chimeric antigen receptor (CAR) natural killer (NK) cells are currently being tested in the clinic. Here, we generated a herpes simplex 1-based OV-expressing human IL15/IL15Rα sushi domain fusion protein (named OV-IL15C), as well as off-the-shelf EGFR-CAR NK cells, and studied their monotherapy and combination efficacy in vitro and in multiple glioblastoma (GBM) mouse models. In vitro, soluble IL15/IL15Rα complex was secreted from OV-IL15C-infected GBM cells, which promoted GBM cytotoxicity and improved survival of NK and CD8+ T cells. Frozen, readily available off-the-shelf EGFR-CAR NK cells showed enhanced killing of tumor cells compared with empty vector-transduced NK cells. In vivo, OV-IL15C significantly inhibited tumor growth and prolonged survival of GBM-bearing mice in the presence of CD8+ T cells compared with parental OV. OV-IL15C plus EGFR-CAR NK cells synergistically suppressed tumor growth and significantly improved survival compared with either monotherapy, correlating with increased intracranial infiltration and activation of NK and CD8+ T cells and elevated persistence of CAR NK cells in an immunocompetent model. Collectively, OV-IL15C and off-the-shelf EGFR-CAR NK cells represent promising therapeutic strategies for GBM treatment to improve the clinical management of this devastating disease. SIGNIFICANCE: The combination of an oncolytic virus expressing the IL15/IL15Rα complex and frozen, ready-to-use EGFR-CAR NK cells elicits strong antitumor responses in glioblastoma.

Journal ArticleDOI
TL;DR: In this paper, the authors found that SOX2 activation activated the cystine transporter SLC7A11 in lung cancer stem-like cells (CSLCs) and increased the self-renewal capacity of CSLCs.
Abstract: Ferroptosis is a lipid peroxidation-dependent cell death caused by metabolic dysfunction. Ferroptosis-associated enzymes are promising therapeutic targets for cancer treatment. However, such therapeutic strategies show limited efficacy due to drug resistance and other largely unknown underlying mechanisms. Here we report that cystine transporter SLC7A11 is upregulated in lung cancer stem-like cells (CSLC) and can be activated by stem cell transcriptional factor SOX2. Mutation of SOX2 binding site in SLC7A11 promoter reduced SLC7A11 expression and increased sensitivity to ferroptosis in cancer cells. Oxidation at Cys265 of SOX2 inhibited its activity and decreased the self-renewal capacity of CSLCs. Moreover, tumors with high SOX2 expression were more resistant to ferroptosis, and SLC7A11 expression was positively correlated with SOX2 in both mouse and human lung cancer tissue. Together, our study provides a mechanism by which cancer cells evade ferroptosis and suggests that oxidation of SOX2 can be a potential therapeutic target for cancer treatment.

Journal ArticleDOI
TL;DR: Data suggest that P. gingivalis contributes to colorectal cancer neoplasia progression by activating the hematopoietic NLRP3 inflammasome activation in vitro and in vivo.
Abstract: Porphyromonas gingivalis (P. gingivalis) is a keystone periodontal pathogen associated with various digestive cancers. However, whether P. gingivalis can promote colorectal cancer and the underlying mechanism associated with such promotion remains unclear. In this study, we found that P. gingivalis was enriched in human feces and tissue samples from patients with colorectal cancer compared with those from patients with colorectal adenoma or healthy subjects. Cohort studies demonstrated that P. gingivalis infection was associated with poor prognosis in colorectal cancer. P. gingivalis increased tumor counts and tumor volume in the ApcMin/+ mouse model and increased tumor growth in orthotopic rectal and subcutaneous carcinoma models. Furthermore, orthotopic tumors from mice exposed to P. gingivalis exhibited tumor-infiltrating myeloid cell recruitment and a proinflammatory signature. P. gingivalis promoted colorectal cancer via NLRP3 inflammasome activation in vitro and in vivo. NLRP3 chimeric mice harboring orthotopic tumors showed that the effect of NLRP3 on P. gingivalis pathogenesis was mediated by hematopoietic sources. Collectively, these data suggest that P. gingivalis contributes to colorectal cancer neoplasia progression by activating the hematopoietic NLRP3 inflammasome. SIGNIFICANCE: This study demonstrates that the periodontal pathogen P. gingivalis can promote colorectal tumorigenesis by recruiting myeloid cells and creating a proinflammatory tumor microenvironment. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/10/2745/F1.large.jpg.

Journal ArticleDOI
TL;DR: In this paper, the cancer cell m6A dynamics in the hypoxic tumor niche and its pathological consequences in glioblastoma multiforme (GBM) were profiled.
Abstract: The dynamic changes of RNA N6-methyl-adenosine (m6A) during cancer progression contribute to quick adaption to microenvironmental changes. Here, we profiled the cancer cell m6A dynamics in the hypoxic tumor niche and its pathological consequences in glioblastoma multiforme (GBM). The m6A demethylase ALKBH5 was induced in GBM models under hypoxic conditions and was associated with a hypoxic gene signature in GBM patient samples. Depletion or inactivation of ALKBH5 in GBM cells significantly suppressed hypoxia-induced tumor-associated macrophage (TAM) recruitment and immunosuppression in allograft tumors. Expression and secretion of CXCL8/IL8 was significantly suppressed in ALKBH5-deficient tumors. However, ALKBH5 did not regulate CXCL8 m6A directly. Instead, hypoxia-induced ALKBH5 erased m6A deposition from the lncRNA NEAT1, stabilizing the transcript and facilitating NEAT1-mediated paraspeckle assembly, which led to relocation of the transcriptional repressor SFPQ from the CXCL8 promoter to paraspeckles and, ultimately, upregulation of CXCL8/IL8 expression. Accordingly, ectopic expression of CXCL8 in ALKBH5-deficient GBM cells partially restored TAM recruitment and tumor progression. Together, this study links hypoxia-induced epitranscriptomic changes to the emergence of an immunosuppressive microenvironment facilitating tumor evasion.

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors used multiparametric photoacoustic (PA) analysis in combination with the American Thyroid Association (ATA) Guideline (ATAP) to reduce unnecessary biopsies.
Abstract: Thyroid cancer is one of the most common cancers, with a global increase in incidence rate for both genders. Ultrasound-guided fine-needle aspiration is the current gold standard to diagnose thyroid cancers, but the results are inaccurate, leading to repeated biopsies and unnecessary surgeries. To reduce the number of unnecessary biopsies, we explored the use of multiparametric photoacoustic (PA) analysis in combination with the American Thyroid Association (ATA) Guideline (ATAP). In this study, we performed in vivo multispectral PA imaging on thyroid nodules from 52 patients, comprising 23 papillary thyroid cancer (PTC) and 29 benign cases. From the multispectral PA data, we calculated hemoglobin oxygen saturation level in the nodule area, then classified the PTC and benign nodules with multiparametric analysis. Statistical analyses showed that this multiparametric analysis of multispectral PA responses could classify PTC nodules. Combining the photoacoustically indicated probability of PTC and the ATAP led to a new scoring method that achieved a sensitivity of 83% and a specificity of 93%. This study is the first multiparametric analysis of multispectral PA data of thyroid nodules with statistical significance. As a proof of concept, the results show that the proposed new ATAP scoring can help physicians examine thyroid nodules for fine-needle aspiration biopsy, thus reducing unnecessary biopsies.

Journal ArticleDOI
TL;DR: Sherman et al. as discussed by the authors showed that ApoE is also elevated in peripheral blood monocytes in PDAC patients, and plasma apoE protein levels stratify patient survival.
Abstract: Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with few effective therapeutic options PDAC is characterized by an extensive fibroinflammatory stroma that includes abundant infiltrating immune cells Tumor-associated macrophages (TAM) are prevalent within the stroma and are key drivers of immunosuppression TAMs in human and murine PDAC are characterized by elevated expression of apolipoprotein E (ApoE), an apolipoprotein that mediates cholesterol metabolism and has known roles in cardiovascular and Alzheimer's disease but no known role in PDAC We report here that ApoE is also elevated in peripheral blood monocytes in PDAC patients, and plasma ApoE protein levels stratify patient survival Orthotopic implantation of mouse PDAC cells into syngeneic wild-type or in ApoE-/- mice showed reduced tumor growth in ApoE-/- mice Histologic and mass cytometric (CyTOF) analysis of these tumors showed an increase in CD8+ T cells in tumors in ApoE-/- mice Mechanistically, ApoE induced pancreatic tumor cell expression of Cxcl1 and Cxcl5, known immunosuppressive factors, through LDL receptor and NF-κB signaling Taken together, this study reveals a novel immunosuppressive role of ApoE in the PDAC microenvironment SIGNIFICANCE: This study shows that elevated apolipoprotein E in PDAC mediates immune suppression and high serum apolipoprotein E levels correlate with poor patient survivalSee related commentary by Sherman, p 4186

Journal ArticleDOI
TL;DR: In this article, the authors used prostate-specific Pten knockout mice as a prostate cancer model to investigate whether there is a gut microbiota-mediated connection between animal fat intake and prostate cancer.
Abstract: Excessive intake of animal fat and resultant obesity are major risk factors for prostate cancer. Because the composition of the gut microbiota is known to change with dietary composition and body type, we used prostate-specific Pten knockout mice as a prostate cancer model to investigate whether there is a gut microbiota-mediated connection between animal fat intake and prostate cancer. Oral administration of an antibiotic mixture (Abx) in prostate cancer-bearing mice fed a high-fat diet containing a large proportion of lard drastically altered the composition of the gut microbiota including Rikenellaceae and Clostridiales, inhibited prostate cancer cell proliferation, and reduced prostate Igf1 expression and circulating insulin-like growth factor-1 (IGF1) levels. In prostate cancer tissue, MAPK and PI3K activities, both downstream of the IGF1 receptor, were suppressed by Abx administration. IGF1 directly promoted the proliferation of prostate cancer cell lines DU145 and 22Rv1 in vitro. Abx administration also reduced fecal levels of short-chain fatty acids (SCFA) produced by intestinal bacteria. Supplementation with SCFAs promoted tumor growth by increasing IGF1 levels. In humans, IGF1 was found to be highly expressed in prostate cancer tissue from obese patients. In conclusion, IGF1 production stimulated by SCFAs from gut microbes influences the growth of prostate cancer via activating local prostate MAPK and PI3K signaling, indicating the existence of a gut microbiota-IGF1-prostate axis. Disrupting this axis by modulating the gut microbiota may aid in prostate cancer prevention and treatment. SIGNIFICANCE: These results suggest that intestinal bacteria, acting through short-chain fatty acids, regulate systemic and local prostate IGF1 in the host, which can promote proliferation of prostate cancer cells.

Journal ArticleDOI
TL;DR: In this paper, a series of orthogonal functional genomic screens were used to identify PARP and ATR inhibitors as being synthetic lethal with polybromo 1 deficiency in clear cell renal cell carcinomas (ccRCC).
Abstract: Inactivation of Polybromo 1 (PBRM1), a specific subunit of the PBAF chromatin remodeling complex, occurs frequently in cancer, including 40% of clear cell renal cell carcinomas (ccRCC). To identify novel therapeutic approaches to targeting PBRM1-defective cancers, we used a series of orthogonal functional genomic screens that identified PARP and ATR inhibitors as being synthetic lethal with PBRM1 deficiency. The PBRM1/PARP inhibitor synthetic lethality was recapitulated using several clinical PARP inhibitors in a series of in vitro model systems and in vivo in a xenograft model of ccRCC. In the absence of exogenous DNA damage, PBRM1-defective cells exhibited elevated levels of replication stress, micronuclei, and R-loops. PARP inhibitor exposure exacerbated these phenotypes. Quantitative mass spectrometry revealed that multiple R-loop processing factors were downregulated in PBRM1-defective tumor cells. Exogenous expression of the R-loop resolution enzyme RNase H1 reversed the sensitivity of PBRM1-deficient cells to PARP inhibitors, suggesting that excessive levels of R-loops could be a cause of this synthetic lethality. PARP and ATR inhibitors also induced cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) innate immune signaling in PBRM1-defective tumor cells. Overall, these findings provide the preclinical basis for using PARP inhibitors in PBRM1-defective cancers. SIGNIFICANCE: This study demonstrates that PARP and ATR inhibitors are synthetic lethal with the loss of PBRM1, a PBAF-specific subunit, thus providing the rationale for assessing these inhibitors in patients with PBRM1-defective cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/11/2888/F1.large.jpg.

Journal ArticleDOI
TL;DR: It is shown that ssDNA replication gaps underlie the hypersensitivity of BRCA-deficient cancer and that defects in homologous recombination (HR) or fork protection (FP) do not, and proposed they are fundamental to the mechanism of action of genotoxic chemotherapies.
Abstract: Defects in DNA repair and the protection of stalled DNA replication forks are thought to underlie the chemosensitivity of tumors deficient in the hereditary breast cancer genes BRCA1 and BRCA2 (BRCA). Challenging this assumption are recent findings that indicate chemotherapies, such as cisplatin used to treat BRCA-deficient tumors, do not initially cause DNA double-strand breaks (DSB). Here, we show that ssDNA replication gaps underlie the hypersensitivity of BRCA-deficient cancer and that defects in homologous recombination (HR) or fork protection (FP) do not. In BRCA-deficient cells, ssDNA gaps developed because replication was not effectively restrained in response to stress. Gap suppression by either restoration of fork restraint or gap filling conferred therapy resistance in tissue culture and BRCA patient tumors. In contrast, restored FP and HR could be uncoupled from therapy resistance when gaps were present. Moreover, DSBs were not detected after therapy when apoptosis was inhibited, supporting a framework in which DSBs are not directly induced by genotoxic agents, but rather are induced from cell death nucleases and are not fundamental to the mechanism of action of genotoxic agents. Together, these data indicate that ssDNA replication gaps underlie the BRCA cancer phenotype, "BRCAness," and we propose they are fundamental to the mechanism of action of genotoxic chemotherapies. SIGNIFICANCE: This study suggests that ssDNA replication gaps are fundamental to the toxicity of genotoxic agents and underlie the BRCA-cancer phenotype "BRCAness," yielding promising biomarkers, targets, and opportunities to resensitize refractory disease.See related commentary by Canman, p. 1214.

Journal ArticleDOI
TL;DR: In this paper, the authors studied the effects of FLASH-proton radiotherapy (F-PRT) on skin and mesenchymal tissues of muscle and bone in the C57BL/6 murine hind leg.
Abstract: In studies of electron and proton radiotherapy, ultrahigh dose rates of FLASH radiotherapy appear to produce fewer toxicities than standard dose rates while maintaining local tumor control. FLASH-proton radiotherapy (F-PRT) brings the spatial advantages of PRT to FLASH dose rates (>40 Gy/second), making it important to understand if and how F-PRT spares normal tissues while providing antitumor efficacy that is equivalent to standard-proton radiotherapy (S-PRT). Here we studied PRT damage to skin and mesenchymal tissues of muscle and bone and found that F-PRT of the C57BL/6 murine hind leg produced fewer severe toxicities leading to death or requiring euthanasia than S-PRT of the same dose. RNA-seq analyses of murine skin and bone revealed pathways upregulated by S-PRT yet unaltered by F-PRT, such as apoptosis signaling and keratinocyte differentiation in skin, as well as osteoclast differentiation and chondrocyte development in bone. Corroborating these findings, F-PRT reduced skin injury, stem cell depletion, and inflammation, mitigated late effects including lymphedema, and decreased histopathologically detected myofiber atrophy, bone resorption, hair follicle atrophy, and epidermal hyperplasia. F-PRT was equipotent to S-PRT in control of two murine sarcoma models, including at an orthotopic intramuscular site, thereby establishing its relevance to mesenchymal cancers. Finally, S-PRT produced greater increases in TGFβ1 in murine skin and the skin of canines enrolled in a phase I study of F-PRT versus S-PRT. Collectively, these data provide novel insights into F-PRT-mediated tissue sparing and support its ongoing investigation in applications that would benefit from this sparing of skin and mesenchymal tissues. SIGNIFICANCE: These findings will spur investigation of FLASH radiotherapy in sarcoma and additional cancers where mesenchymal tissues are at risk, including head and neck cancer, breast cancer, and pelvic malignancies.

Journal ArticleDOI
TL;DR: In this paper, EBV-encoded circBART2.2 was found to be highly expressed in nasopharyngeal carcinoma (NPC) where it upregulated PD-L1 expression and inhibited T cell function in vitro and in vivo.
Abstract: Epstein-Barr virus (EBV) infection is an established cause of nasopharyngeal carcinoma (NPC) and is involved in a variety of malignant phenotypes, including tumor immune escape. EBV can encode a variety of circular RNAs; however, little is known regarding the biological functions of these circRNAs in NPC. In this study, EBV-encoded circBART2.2 was found to be highly expressed in NPC where it upregulated PD-L1 expression and inhibited T cell function in vitro and in vivo. circBART2.2 promoted transcription of PD-L1 by binding the helicase domain of RIG-I and activating transcription factors IRF3 and NF-κB, resulting in tumor immune escape. These results elucidate the biological function of circBART2.2, explain a novel mechanism of immune escape caused by EBV infection, and provide a new immunotherapy target for treating NPC.

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper revealed a mechanism by which Fusobacterium nucleatum regulates colorectal cancer metabolism to drive metastasis, suggesting the potential biomarker and therapeutic utility of the CYP2J2/12,13-EpOME axis in Fn-infected patients.
Abstract: Emerging research has revealed regulation of colorectal cancer metabolism by bacteria. Fusobacterium nucleatum (Fn) plays a crucial role in the development of colorectal cancer, however, whether Fn infection modifies metabolism in patients with colorectal cancer remains unknown. Here, LC-MS/MS-based lipidomics identified the upregulation of cytochrome P450 monooxygenases, primarily CYP2J2, and their mediated product 12,13-EpOME in patients with colorectal cancer tumors and mouse models, which increased the invasive and migratory ability of colorectal cancer cells in vivo and in vitro by regulating the epithelial-mesenchymal transition (EMT). Metagenomic sequencing indicated a positive correlation between increased levels of fecal Fn and serum 12,13-EpOME in patients with colorectal cancer. High levels of CYP2J2 in tumor tissues also correlated with high Fn levels and worse overall survival in patients with stage III/IV colorectal cancer. Moreover, Fn was found to activate TLR4/AKT signaling, downregulating Keap1 and increasing NRF2 to promote transcription of CYP2J2. Collectively, these data identify that Fn promotes EMT and metastasis in colorectal cancer by activating a TLR4/Keap1/NRF2 axis to increase CYP2J2 and 12,13-EpOME, which could serve as clinical biomarkers and therapeutic targets for Fn-infected patients with colorectal cancer. SIGNIFICANCE: This study uncovers a mechanism by which Fusobacterium nucleatum regulates colorectal cancer metabolism to drive metastasis, suggesting the potential biomarker and therapeutic utility of the CYP2J2/12,13-EpOME axis in Fn-infected patients.

Journal ArticleDOI
TL;DR: Overall, these results demonstrate that circIGHG plays a pivotal role in OSCC development and metastasis and has potential to serve as a biomarker and therapeutic target for early-stage diagnosis and treatment of OSCC.
Abstract: Circular RNAs (circRNA) are a new member of endogenously produced noncoding RNAs that have been characterized as key regulators of gene expression in a variety of malignances. However, the role of circRNA in oral squamous cell carcinoma (OSCC) remains largely unknown. In this study, we identified unique circRNA that regulate OSCC progression and metastasis and pave roads for future research in early diagnosis, prevention, and treatment of OSCC. Transcriptomic analyses identified a circRNA derived from IGHG locus (circIGHG) as significantly upregulated in OSCC and positively associated with poor prognosis of OSCC. circIGHG directly bound miR-142-5p and consequently elevated IGF2BP3 activity. Knockdown of circIGHG led to impaired expression of IGF2BP3 and attenuated aggressiveness of OSCC cells. Epithelial-mesenchymal transition was the main mechanism through which circIGHG/IGF2BP3 promotes metastasis of OSCC. Overall, these results demonstrate that circIGHG plays a pivotal role in OSCC development and metastasis and has potential to serve as a biomarker and therapeutic target for early-stage diagnosis and treatment of OSCC. SIGNIFICANCE: These findings broaden our insights regarding regulation of OSCC progression by circular RNA and serve as a reference for future clinical research in OSCC diagnosis and treatment.

Journal ArticleDOI
TL;DR: In this paper, a positive feedback loop involving the EPHB2/β-catenin axis may be a possible therapeutic strategy to combat acquired drug resistance in hepatocellular carcinoma (HCC) patients.
Abstract: The survival benefit derived from sorafenib treatment for patients with hepatocellular carcinoma (HCC) is modest due to acquired resistance. Targeting cancer stem cells (CSC) is a possible way to reverse drug resistance, however, inhibitors that specifically target liver CSCs are limited. In this study, we established two sorafenib-resistant, patient-derived tumor xenografts (PDX) that mimicked development of acquired resistance to sorafenib in patients with HCC. RNA-sequencing analysis of sorafenib-resistant PDXs and their corresponding mock controls identified EPH receptor B2 (EPHB2) as the most significantly upregulated kinase. EPHB2 expression increased stepwise from normal liver tissue to fibrotic liver tissue to HCC tissue and correlated with poor prognosis. Endogenous EPHB2 knockout showed attenuation of tumor development in mice. EPHB2 regulated the traits of liver CSCs; similarly, sorted EPHB2High HCC cells were endowed with enhanced CSC properties when compared with their EPHB2-Low counterparts. Mechanistically, EPHB2 regulated cancer stemness and drug resistance by driving the SRC/AKT/GSK3β/β-catenin signaling cascade, and EPHB2 expression was regulated by TCF1 via promoter activation, forming a positive Wnt/β-catenin feedback loop. Intravenous administration of rAAV-8-shEPHB2 suppressed HCC tumor growth and significantly sensitized HCC cells to sorafenib in an NRAS/AKT-driven HCC immunocompetent mouse model. Targeting a positive feedback loop involving the EPHB2/β-catenin axis may be a possible therapeutic strategy to combat acquired drug resistance in HCC. SIGNIFICANCE: This study identifies a EPHB2/β-catenin/TCF1 positive feedback loop that augments cancer stemness and sorafenib resistance in HCC, revealing a targetable axis to combat acquired drug resistance in HCC. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/12/3229/F1.large.jpg.

Journal ArticleDOI
TL;DR: A general, but simple, mathematical model is studies whether the presence of a cost is necessary for adaptive therapy to extend the time to progression beyond that of a standard-of-care continuous therapy and suggests that turnover may play an unexpectedly important role in the decision-making process.
Abstract: Adaptive therapy seeks to exploit intratumoral competition to avoid, or at least delay, the emergence of therapy resistance in cancer. Motivated by promising results in prostate cancer, there is growing interest in extending this approach to other neoplasms. As such, it is urgent to understand the characteristics of a cancer that determine whether or not it will respond well to adaptive therapy. A plausible candidate for such a selection criterion is the fitness cost of resistance. In this article, we study a general, but simple, mathematical model to investigate whether the presence of a cost is necessary for adaptive therapy to extend the time to progression beyond that of a standard-of-care continuous therapy. Tumor cells were divided into sensitive and resistant populations and we model their competition using a system of two ordinary differential equations based on the Lotka-Volterra model. For tumors close to their environmental carrying capacity, a cost was not required. However, for tumors growing far from carrying capacity, a cost may be required to see meaningful gains. Notably, it is important to consider cell turnover in the tumor, and we discuss its role in modulating the impact of a resistance cost. To conclude, we present evidence for the predicted cost-turnover interplay in data from 67 patients with prostate cancer undergoing intermittent androgen deprivation therapy. Our work helps to clarify under which circumstances adaptive therapy may be beneficial and suggests that turnover may play an unexpectedly important role in the decision-making process. SIGNIFICANCE: Tumor cell turnover modulates the speed of selection against drug resistance by amplifying the effects of competition and resistance costs; as such, turnover is an important factor in resistance management via adaptive therapy.See related commentary by Strobl et al., p. 811.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the relationship between smoking history and clinically relevant mutations in non-small cell lung cancer, revealing the potential of smoking history as a surrogate for tumor mutation burden.
Abstract: Lung carcinogenesis is a complex and stepwise process involving accumulation of genetic mutations in signaling and oncogenic pathways via interactions with environmental factors and host susceptibility. Tobacco exposure is the leading cause of lung cancer, but its relationship to clinically relevant mutations and the composite tumor mutation burden (TMB) has not been fully elucidated. In this study, we investigated the dose-response relationship in a retrospective observational study of 931 patients treated for advanced-stage non-small cell lung cancer (NSCLC) between April 2013 and February 2020 at the Dana Farber Cancer Institute and Brigham and Women's Hospital. Doubling smoking pack-years was associated with increased KRASG12C and less frequent EGFRdel19 and EGFRL858R mutations, whereas doubling smoking-free months was associated with more frequent EGFRL858R . In advanced lung adenocarcinoma, doubling smoking pack-years was associated with an increase in TMB, whereas doubling smoking-free months was associated with a decrease in TMB, after controlling for age, gender, and stage. There is a significant dose-response association of smoking history with genetic alterations in cancer-related pathways and TMB in advanced lung adenocarcinoma. SIGNIFICANCE: This study clarifies the relationship between smoking history and clinically relevant mutations in non-small cell lung cancer, revealing the potential of smoking history as a surrogate for tumor mutation burden.

Journal ArticleDOI
TL;DR: The role of USP48 in hepatocellular carcinoma (HCC) tumorigenesis is investigated in this article, where the authors showed that USP 48 is regulated by methyltransferase-like 14 (Mettl14)-induced m6A modification and stabilizes SIRT6 to attenuate HCC glycolysis and malignancy.
Abstract: Exploiting cancer metabolism for the clinical benefit of patients with hepatocellular carcinoma (HCC) is a topic under active investigation. Ubiquitin-specific peptidase 48 (USP48), a member of the ubiquitin-specific protease family, is involved in tumor growth, inflammation, and genome stability. However, the role of USP48 in HCC tumorigenesis remains unknown. In this study, we report that expression of USP48 is downregulated in diethylnitrosamine-induced liver tumorigenesis in mice as well as in human HCC. USP48 physically bound and stabilized SIRT6 by K48-linked deubiquitination at the K33 and K128 sites of SIRT6, which impeded metabolic reprogramming to hamper HCC tumorigenesis. Moreover, methyltransferase-like 14 (Mettl14)-induced m6A modification participated in the regulation of USP48 in HCC by maintaining USP48 mRNA stability. Our work uncovers the tumor-suppressive function of the Mettl14-USP48-SIRT6 axis via modulation of glycolysis, providing new insights into the critical roles of metabolic activities in HCC and identifying an attractive target for future treatment studies. SIGNIFICANCE: These findings demonstrate that USP48 is regulated by Mettl14-induced m6A modification and stabilizes SIRT6 to attenuate HCC glycolysis and malignancy.

Journal ArticleDOI
TL;DR: In this paper, a two-step process comprises the Wnt-β-catenin pathway mediating BCC dedifferentiation into cancer stem cells at the BM perivascular niche.
Abstract: In the bone marrow (BM), breast cancer cells (BCC) can survive in dormancy for decades as cancer stem cells (CSC), resurging as tertiary metastasis. The endosteal region where BCCs exist as CSCs poses a challenge to target them, mostly due to the coexistence of endogenous hematopoietic stem cells. This study addresses the early period of dormancy when BCCs enter BM at the perivascular region to begin the transition into CSCs, which we propose as the final step in dormancy. A two-step process comprises the Wnt-β-catenin pathway mediating BCC dedifferentiation into CSCs at the BM perivascular niche. At this site, BCCs responded to two types of mesenchymal stem cell (MSC)-released extracellular vesicles (EV) that may include exosomes. Early released EVs began the transition into cycling quiescence, DNA repair, and reorganization into distinct BCC subsets. After contact with breast cancer, the content of EVs changed (primed) to complete dedifferentiation into a more homogeneous population with CSC properties. BCC progenitors (Oct4alo), which are distant from CSCs in a hierarchical stratification, were sensitive to MSC EVs. Despite CSC function, Oct4alo BCCs expressed multipotent pathways similar to CSCs. Oct4alo BCCs dedifferentiated and colocalized with MSCs (murine and human BM) in vivo. Overall, these findings elucidate a mechanism of early dormancy at the BM perivascular region and provide evidence of epigenome reorganization as a potential new therapy for breast cancer. SIGNIFICANCE: These findings describe how the initial process of dormancy and dedifferentiation of breast cancer cells at the bone marrow perivascular niche requires mesenchymal stem cell-derived exosomes, indicating a potential target for therapeutic intervention.