scispace - formally typeset
Search or ask a question
Institution

AT&T Labs

Company
About: AT&T Labs is a based out in . It is known for research contribution in the topics: Network packet & The Internet. The organization has 1879 authors who have published 5595 publications receiving 483151 citations.


Papers
More filters
Book ChapterDOI
29 Sep 2004
TL;DR: This work shows how to draw graphs by stress majorization, adapting a technique known in the MDS community for more than two decades and appears that majorization has advantages over the technique of Kamada and Kawai in running time and stability.
Abstract: One of the most popular graph drawing methods is based on achieving graph-theoretic target distances. This method was used by Kamada and Kawai [15], who formulated it as an energy optimization problem. Their energy is known in the multidimensional scaling (MDS) community as the stress function. In this work, we show how to draw graphs by stress majorization, adapting a technique known in the MDS community for more than two decades. It appears that majorization has advantages over the technique of Kamada and Kawai in running time and stability. We also found the majorization-based optimization being essential to a few extensions to the basic energy model. These extensions can improve layout quality and computation speed in practice.

402 citations

Proceedings ArticleDOI
08 Oct 2012
TL;DR: The prototype of COMET (Code Offload by Migrating Execution Transparently), a realization of this design built on top of the Dalvik Virtual Machine, leverages the underlying memory model of the runtime to implement distributed shared memory (DSM) with as few interactions between machines as possible.
Abstract: In this paper we introduce a runtime system to allow unmodified multi-threaded applications to use multiple machines. The system allows threads to migrate freely between machines depending on the workload. Our prototype, COMET (Code Offload by Migrating Execution Transparently), is a realization of this design built on top of the Dalvik Virtual Machine. COMET leverages the underlying memory model of our runtime to implement distributed shared memory (DSM) with as few interactions between machines as possible. Making use of a new VM-synchronization primitive, COMET imposes little restriction on when migration can occur. Additionally, enough information is maintained so one machine may resume computation after a network failure.We target our efforts towards augmenting smartphones or tablets with machines available in the network. We demonstrate the effectiveness of COMET on several real applications available on Google Play. These applications include image editors, turn-based games, a trip planner, and math tools. Utilizing a server-class machine, COMET can offer significant speed-ups on these real applications when run on a modern smartphone. With WiFi and 3G networks, we observe geometric mean speed-ups of 2.88× and 1.27× relative to the Dalvik interpreter across the set of applications with speed-ups as high as 15× on some applications.

399 citations

Proceedings ArticleDOI
27 Aug 2013
TL;DR: It is observed that LTE has significantly shorter state promotion delays and lower RTTs than those of 3G networks, and various inefficiencies in TCP over LTE such as undesired slow start and limited TCP receive window are discovered.
Abstract: With lower latency and higher bandwidth than its predecessor 3G networks, the latest cellular technology 4G LTE has been attracting many new users. However, the interactions among applications, network transport protocol, and the radio layer still remain unexplored. In this work, we conduct an in-depth study of these interactions and their impact on performance, using a combination of active and passive measurements. We observed that LTE has significantly shorter state promotion delays and lower RTTs than those of 3G networks. We discovered various inefficiencies in TCP over LTE such as undesired slow start. We further developed a novel and lightweight passive bandwidth estimation technique for LTE networks. Using this tool, we discovered that many TCP connections significantly under-utilize the available bandwidth. On average, the actually used bandwidth is less than 50% of the available bandwidth. This causes data downloads to be longer, and incur additional energy overhead. We found that the under-utilization can be caused by both application behavior and TCP parameter setting. We found that 52.6% of all downlink TCP flows have been throttled by limited TCP receive window, and that data transfer patterns for some popular applications are both energy and network unfriendly. All these findings highlight the need to develop transport protocol mechanisms and applications that are more LTE-friendly.

392 citations

Proceedings ArticleDOI
03 Oct 2016
TL;DR: This paper proposes a cellular-friendly streaming scheme that delivers only 360 videos' visible portion based on head movement prediction, which can reduce bandwidth consumption by up to 80% based on a trace-driven simulation.
Abstract: As an important component of the virtual reality (VR) technology, 360-degree videos provide users with panoramic view and allow them to freely control their viewing direction during video playback. Usually, a player displays only the visible portion of a 360 video. Thus, fetching the entire raw video frame wastes bandwidth. In this paper, we consider the problem of optimizing 360 video delivery over cellular networks. We first conduct a measurement study on commercial 360 video platforms. We then propose a cellular-friendly streaming scheme that delivers only 360 videos' visible portion based on head movement prediction. Using viewing data collected from real users, we demonstrate the feasibility of our approach, which can reduce bandwidth consumption by up to 80% based on a trace-driven simulation.

391 citations

Proceedings ArticleDOI
17 Aug 2009
TL;DR: This research shows that it is possible for third-parties to link PII, which is leaked via OSNs, with user actions both within OSN sites and else-where on non-OSN sites.
Abstract: For purposes of this paper, we define "Personally identifiable information" (PII) as information which can be used to distinguish or trace an individual's identity either alone or when combined with other information that is linkable to a specific individual. The popularity of Online Social Networks (OSN) has accelerated the appearance of vast amounts of personal information on the Internet. Our research shows that it is possible for third-parties to link PII, which is leaked via OSNs, with user actions both within OSN sites and else-where on non-OSN sites. We refer to this ability to link PII and combine it with other information as "leakage". We have identified multiple ways by which such leakage occurs and discuss measures to prevent it.

389 citations


Authors

Showing all 1881 results

NameH-indexPapersCitations
Yoshua Bengio2021033420313
Scott Shenker150454118017
Paul Shala Henry13731835971
Peter Stone130122979713
Yann LeCun121369171211
Louis E. Brus11334763052
Jennifer Rexford10239445277
Andreas F. Molisch9677747530
Vern Paxson9326748382
Lorrie Faith Cranor9232628728
Ward Whitt8942429938
Lawrence R. Rabiner8837870445
Thomas E. Graedel8634827860
William W. Cohen8538431495
Michael K. Reiter8438030267
Network Information
Related Institutions (5)
Microsoft
86.9K papers, 4.1M citations

94% related

Google
39.8K papers, 2.1M citations

91% related

Hewlett-Packard
59.8K papers, 1.4M citations

89% related

Bell Labs
59.8K papers, 3.1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20225
202133
202069
201971
2018100
201791