scispace - formally typeset
Search or ask a question
Institution

AT&T Labs

Company
About: AT&T Labs is a based out in . It is known for research contribution in the topics: Network packet & The Internet. The organization has 1879 authors who have published 5595 publications receiving 483151 citations.


Papers
More filters
Journal ArticleDOI
28 Aug 2000
TL;DR: A model of traffic demands to support traffic engineering and performance debugging of large Internet Service Provider networks is presented and how to infer interdomain traffic demands is shown using measurements collected at a smaller number of edge links --- the peering links connecting to neighboring providers.
Abstract: Engineering a large IP backbone network without an accurate, network-wide view of the traffic demands is challenging. Shifts in user behavior, changes in routing policies, and failures of network elements can result in significant (and sudden) fluctuations in load. In this paper, we present a model of traffic demands to support traffic engineering and performance debugging of large Internet Service Provider networks. By defining a traffic demand as a volume of load originating from an ingress link and destined to a set of egress links, we can capture and predict how routing affects the traffic traveling between domains. To infer the traffic demands, we propose a measurement methodology that combines flow-level measurements collected at all ingress links with reachability information about all egress links. We discuss how to cope with situations where practical considerations limit the amount and quality of the necessary data. Specifically, we show how to infer interdomain traffic demands using measurements collected at a smaller number of edge links --- the peering links connecting to neighboring providers. We report on our experiences in deriving the traffic demands in the AT&T IP Backbone, by collecting, validating, and joining very large and diverse sets of usage, configuration, and routing data over extended periods of time. The paper concludes with a preliminary analysis of the observed dynamics of the traffic demands and a discussion of the practical implications for traffic engineering.

128 citations

Proceedings ArticleDOI
01 Aug 2000
TL;DR: This paper discusses issues arising in testing database systems and presents an approach to testing database applications, and a tool for populating the database with meaningful data that satisfy database constraints has been prototyped.
Abstract: Database systems play an important role in nearly every modern organization, yet relatively little research effort has focused on how to test them. This paper discusses issues arising in testing database systems and presents an approach to testing database applications. In testing such applications, the state of the database before and after the user's operation plays an important role, along with the user's input and the system output. A tool for populating the database with meaningful data that satisfy database constraints has been prototyped. Its design and its role in a larger database application testing tool set are discussed.

128 citations

Proceedings ArticleDOI
22 Aug 2016
TL;DR: Owan is presented, a novel traffic management system that optimizes wide-area bulk transfers with centralized joint control of the optical and network layers with efficient algorithms to jointly optimize optical circuit setup, routing and rate allocation, and dynamically adapt them to traffic demand changes.
Abstract: Bulk transfer on the wide-area network (WAN) is a fundamental service to many globally-distributed applications. It is challenging to efficiently utilize expensive WAN bandwidth to achieve short transfer completion time and meet mission-critical deadlines. Advancements in software-defined networking (SDN) and optical hardware make it feasible and beneficial to quickly reconfigure optical devices in the optical layer, which brings a new opportunity for traffic management on the WAN. We present Owan, a novel traffic management system that optimizes wide-area bulk transfers with centralized joint control of the optical and network layers. \sysname can dynamically change the network-layer topology by reconfiguring the optical devices. We develop efficient algorithms to jointly optimize optical circuit setup, routing and rate allocation, and dynamically adapt them to traffic demand changes. We have built a prototype of Owan with commodity optical and electrical hardware. Testbed experiments and large-scale simulations on two ISP topologies and one inter-DC topology show that \sysname completes transfers up to 4.45x faster on average, and up to 1.36x more transfers meet their deadlines, as compared to prior methods that only control the network layer.

128 citations

Journal ArticleDOI
TL;DR: A multimodal dialogue system and algorithms for adaptive content selection based on multi-attribute decision theory are described and the improved efficacy of system responses are demonstrated through the use of user models to both tailor the content of system utterances and to manipulate their conciseness.

127 citations

Proceedings ArticleDOI
27 Oct 2003
TL;DR: This paper formalizes the semantics of address delegation and use on the Internet, and develops and characterize broad classes of origin authentication proof systems, and shows the enhanced proof systems can reduce significantly reduce resource costs associated with origin authentication.
Abstract: Attacks against Internet routing are increasing in number and severity. Contributing greatly to these attacks is the absence of origin authentication: there is no way to validate claims of address ownership or location. The lack of such services enables not only attacks by malicious entities, but indirectly allow seemingly inconsequential miconfigurations to disrupt large portions of the Internet. This paper considers the semantics, design, and costs of origin authentication in interdomain routing. We formalize the semantics of address delegation and use on the Internet, and develop and characterize broad classes of origin authentication proof systems. We estimate the address delegation graph representing the current use of IPv4 address space using available routing data. This effort reveals that current address delegation is dense and relatively static: as few as 16 entities perform 80% of the delegation on the Internet. We conclude by evaluating the proposed services via traced based simulation. Our simulation shows the enhanced proof systems can reduce significantly reduce resource costs associated with origin authentication.

127 citations


Authors

Showing all 1881 results

NameH-indexPapersCitations
Yoshua Bengio2021033420313
Scott Shenker150454118017
Paul Shala Henry13731835971
Peter Stone130122979713
Yann LeCun121369171211
Louis E. Brus11334763052
Jennifer Rexford10239445277
Andreas F. Molisch9677747530
Vern Paxson9326748382
Lorrie Faith Cranor9232628728
Ward Whitt8942429938
Lawrence R. Rabiner8837870445
Thomas E. Graedel8634827860
William W. Cohen8538431495
Michael K. Reiter8438030267
Network Information
Related Institutions (5)
Microsoft
86.9K papers, 4.1M citations

94% related

Google
39.8K papers, 2.1M citations

91% related

Hewlett-Packard
59.8K papers, 1.4M citations

89% related

Bell Labs
59.8K papers, 3.1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20225
202133
202069
201971
2018100
201791