scispace - formally typeset
Search or ask a question
Institution

AT&T Labs

Company
About: AT&T Labs is a based out in . It is known for research contribution in the topics: Network packet & The Internet. The organization has 1879 authors who have published 5595 publications receiving 483151 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors discuss packet data transmission rates of 2-5 Mbps in macrocellular environments and up to 10 Mbps in microcellular and indoor environments as a complementary service to evolving second-and third-generation wireless systems.
Abstract: The rapid growth of wireless voice subscribers, the growth of the Internet, and the increasing use of portable computing devices suggest that wireless Internet access will rise rapidly over the next few years. Rapid progress in digital and RF technology is making possible highly compact and integrated terminal devices, and the introduction of sophisticated wireless data software is making wireless Internet access more user-friendly and providing more value. Transmission rates are currently only about 10 kb/s for large cell systems. Third-generation wireless access such as WCDMA and the evolution of second-generation systems such as TDMA IS-136+, EDGE, and CDMA IS-95 will provide nominal bit rates of 50-384 kb/s in macrocellular systems. This article discusses packet data transmission rates of 2-5 Mb/s in macrocellular environments and up to 10 Mb/s in microcellular and indoor environments as a complementary service to evolving second- and third-generation wireless systems. Dynamic packet assignment for high-efficiency resource management and packet admission; OFDM at the physical layer with interference suppression, space-time coding, and frequency diversity; as well as smart antennas to obtain good power and spectral efficiency are discussed in this proposal. Flexible allocation of both large and small resources also permits provisioning of services for different delay and throughput requirements.

363 citations

Book
16 Jan 2012
TL;DR: Approximate Query Processing (AQP) as mentioned in this paper uses a lossy, compact synopsis of the data, and then executes the query of interest against the synopsis rather than the entire dataset.
Abstract: Methods for Approximate Query Processing (AQP) are essential for dealing with massive data. They are often the only means of providing interactive response times when exploring massive datasets, and are also needed to handle high speed data streams. These methods proceed by computing a lossy, compact synopsis of the data, and then executing the query of interest against the synopsis rather than the entire dataset. We describe basic principles and recent developments in AQP. We focus on four key synopses: random samples, histograms, wavelets, and sketches. We consider issues such as accuracy, space and time efficiency, optimality, practicality, range of applicability, error bounds on query answers, and incremental maintenance. We also discuss the trade-offs between the different synopsis types.

361 citations

Book ChapterDOI
15 Apr 1998
TL;DR: The rationale for designing a simple trust-management system for public-key infrastructures, called KeyNote, based on the motivating principles are expressibility, simplicity, and extensibility is discussed.
Abstract: This paper discusses the rationale for designing a simple trust-management system for public-key infrastructures, called KeyNote. The motivating principles are expressibility, simplicity, and extensibility. We believe that none of the existing public-key infrastructure proposals provide as good a combination of these three factors.

361 citations

Proceedings ArticleDOI
19 Aug 2002
TL;DR: This paper examines Internet flow rates and the relationship between the rate and other flow characteristics such as size and duration, and attempts to determine the cause of the rates at which flows transmit data by developing a tool, T-RAT, to analyze packet-level TCP dynamics.
Abstract: This paper considers the distribution of the rates at which flows transmit data, and the causes of these rates. First, using packet level traces from several Internet links, and summary flow statistics from an ISP backbone, we examine Internet flow rates and the relationship between the rate and other flow characteristics such as size and duration. We find, as have others, that while the distribution of flow rates is skewed, it is not as highly skewed as the distribution of flow sizes. We also find that for large flows the size and rate are highly correlated. Second, we attempt to determine the cause of the rates at which flows transmit data by developing a tool, T-RAT, to analyze packet-level TCP dynamics. In our traces, the most frequent causes appear to be network congestion and receiver window limits.

361 citations

Proceedings ArticleDOI
25 Aug 2003
TL;DR: Using the BGP tables as a starting point, techniques for improving the IP-to-AS mapping are proposed as an important step toward an AS-level traceroute tool.
Abstract: Traceroute is widely used to detect routing problems, characterize end-to-end paths, and discover the Internet topology. Providing an accurate list of the Autonomous Systems (ASes) along the forwarding path would make traceroute even more valuable to researchers and network operators. However, conventional approaches to mapping traceroute hops to AS numbers are not accurate enough. Address registries are often incomplete and out-of-date. BGP routing tables provide a better IP-to-AS mapping, though this approach has significant limitations as well. Based on our extensive measurements, about 10% of the traceroute paths have one or more hops that do not map to a unique AS number, and around 15% of the traceroute AS paths have an AS loop. In addition, some traceroute AS paths have extra or missing AS hops due to Internet eXchange Points, sibling ASes managed by the same institution, and ASes that do not advertise routes to their infrastructure. Using the BGP tables as a starting point, we propose techniques for improving the IP-to-AS mapping as an important step toward an AS-level traceroute tool. Our algorithms draw on analysis of traceroute probes, reverse DNS lookups, BGP routing tables, and BGP update messages collected from multiple locations. We also discuss how the improved IP-to-AS mapping allows us to home in on cases where the BGP and traceroute AS paths differ for legitimate reasons.

360 citations


Authors

Showing all 1881 results

NameH-indexPapersCitations
Yoshua Bengio2021033420313
Scott Shenker150454118017
Paul Shala Henry13731835971
Peter Stone130122979713
Yann LeCun121369171211
Louis E. Brus11334763052
Jennifer Rexford10239445277
Andreas F. Molisch9677747530
Vern Paxson9326748382
Lorrie Faith Cranor9232628728
Ward Whitt8942429938
Lawrence R. Rabiner8837870445
Thomas E. Graedel8634827860
William W. Cohen8538431495
Michael K. Reiter8438030267
Network Information
Related Institutions (5)
Microsoft
86.9K papers, 4.1M citations

94% related

Google
39.8K papers, 2.1M citations

91% related

Hewlett-Packard
59.8K papers, 1.4M citations

89% related

Bell Labs
59.8K papers, 3.1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20225
202133
202069
201971
2018100
201791