scispace - formally typeset
Search or ask a question
Institution

Grenoble Institute of Technology

EducationGrenoble, France
About: Grenoble Institute of Technology is a education organization based out in Grenoble, France. It is known for research contribution in the topics: Hyperspectral imaging & Geology. The organization has 3427 authors who have published 5345 publications receiving 137158 citations. The organization is also known as: Grenoble INP.


Papers
More filters
Journal ArticleDOI
13 Dec 2010-Polymers
TL;DR: In this article, a clear overview of cellulose nanoparticles reinforced composites with more than 150 references by describing their preparation, characterization, properties and applications is presented, and different systems are detailed depending on the polymer solubility, i.e., (i) hydrosoluble systems, (ii) non-hydrosolvable systems, and (iii) emulsion systems.
Abstract: Cellulose is the most abundant biomass material in nature. Extracted from natural fibers, its hierarchical and multi-level organization allows different kinds of nanoscaled cellulosic fillers—called cellulose nanocrystals or microfibrillated cellulose (MFC)—to be obtained. Recently, such cellulose nanoparticles have been the focus of an exponentially increasing number of works or reviews devoted to understanding such materials and their applications. Major studies over the last decades have shown that cellulose nanoparticles could be used as fillers to improve mechanical and barrier properties of biocomposites. Their use for industrial packaging is being investigated, with continuous studies to find innovative solutions for efficient and sustainable systems. Processing is more and more important and different systems are detailed in this paper depending on the polymer solubility, i.e., (i) hydrosoluble systems, (ii) non-hydrosoluble systems, and (iii) emulsion systems. This paper intends to give a clear overview of cellulose nanoparticles reinforced composites with more than 150 references by describing their preparation, characterization, properties and applications.

1,108 citations

Journal ArticleDOI
TL;DR: An approach has been proposed which is based on using several principal components from the hyperspectral data and build morphological profiles which can be used all together in one extended morphological profile for classification of urban structures.
Abstract: A method is proposed for the classification of urban hyperspectral data with high spatial resolution. The approach is an extension of previous approaches and uses both the spatial and spectral information for classification. One previous approach is based on using several principal components (PCs) from the hyperspectral data and building several morphological profiles (MPs). These profiles can be used all together in one extended MP. A shortcoming of that approach is that it was primarily designed for classification of urban structures and it does not fully utilize the spectral information in the data. Similarly, the commonly used pixelwise classification of hyperspectral data is solely based on the spectral content and lacks information on the structure of the features in the image. The proposed method overcomes these problems and is based on the fusion of the morphological information and the original hyperspectral data, i.e., the two vectors of attributes are concatenated into one feature vector. After a reduction of the dimensionality, the final classification is achieved by using a support vector machine classifier. The proposed approach is tested in experiments on ROSIS data from urban areas. Significant improvements are achieved in terms of accuracies when compared to results obtained for approaches based on the use of MPs based on PCs only and conventional spectral classification. For instance, with one data set, the overall accuracy is increased from 79% to 83% without any feature reduction and to 87% with feature reduction. The proposed approach also shows excellent results with a limited training set.

1,092 citations

Journal ArticleDOI
TL;DR: In this article, a yield function that describes the behavior of orthortropic sheets, metals exhibiting planar anisotropy and subjected to plane stress conditions is proposed, which is shown to give a reasonable approximation to plastic potentials calculated with the Taylor/Bishop and Hill theory of polycrystalline plasticity for plane stress states.

1,083 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied how the adoption of different Industry 4.0 technologies is associated with expected benefits for product, operations and side-effects aspects in the Brazilian industry.

1,024 citations

Journal ArticleDOI
TL;DR: In this article, cellulose fibres and cellulose nanocrystals were extracted from rice husk using sulphuric acid (H2SO4) hydrolysis treatment.

1,011 citations


Authors

Showing all 3527 results

NameH-indexPapersCitations
J. F. Macías-Pérez13448694715
J-Y. Hostachy11971665686
Alain Dufresne11135845904
David Brown105125746827
Raphael Noel Tieulent8941724926
Antonio Plaza7963129775
G. Conesa Balbastre7620818800
Jocelyn Chanussot7361427949
Ekhard K. H. Salje7058119938
Richard Wilson7080921477
Jerome Bouvier7027813724
David Maurin6821517295
Alessandro Gandini6734819813
Matthieu Tristram6714317188
D. Santos6511315648
Network Information
Related Institutions (5)
Georgia Institute of Technology
119K papers, 4.6M citations

90% related

Delft University of Technology
94.4K papers, 2.7M citations

90% related

Royal Institute of Technology
68.4K papers, 1.9M citations

90% related

Nanyang Technological University
112.8K papers, 3.2M citations

90% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023106
2022157
2021160
2020142
2019146
2018152