scispace - formally typeset
Search or ask a question
Institution

Korea Institute of Science and Technology Information

FacilityDaejeon, South Korea
About: Korea Institute of Science and Technology Information is a facility organization based out in Daejeon, South Korea. It is known for research contribution in the topics: Gravitational wave & LIGO. The organization has 1152 authors who have published 2319 publications receiving 93849 citations. The organization is also known as: Korea Institute of Science and Technology Information & KISTI.
Topics: Gravitational wave, LIGO, KEKB, Grid, Grid computing


Papers
More filters
Journal ArticleDOI
Betty Abelev1, Jaroslav Adam2, Dagmar Adamová3, Andrew Marshall Adare4  +1054 moreInstitutions (93)
TL;DR: The ALICE Collaboration is preparing a major upgrade of the experimental apparatus, planned for installation in the second long LHC shutdown in the years 2018-2019 as mentioned in this paper, which will be achieved by an increase of the Pb-Pb instant luminosity up to 6×1027 cm−2s−1 and running the ALICE detector with the continuous readout at the 50 kHz event rate.
Abstract: ALICE (A Large Ion Collider Experiment) is studying the physics of strongly interacting matter, and in particular the properties of the Quark–Gluon Plasma (QGP), using proton–proton, proton–nucleus and nucleus–nucleus collisions at the CERN LHC (Large Hadron Collider). The ALICE Collaboration is preparing a major upgrade of the experimental apparatus, planned for installation in the second long LHC shutdown in the years 2018–2019. These plans are presented in the ALICE Upgrade Letter of Intent, submitted to the LHCC (LHC experiments Committee) in September 2012. In order to fully exploit the physics reach of the LHC in this field, high-precision measurements of the heavy-flavour production, quarkonia, direct real and virtual photons, and jets are necessary. This will be achieved by an increase of the LHC Pb–Pb instant luminosity up to 6×1027 cm−2s−1 and running the ALICE detector with the continuous readout at the 50 kHz event rate. The physics performance accessible with the upgraded detector, together with the main detector modifications, are presented.

196 citations

Journal ArticleDOI
TL;DR: In this article, the production of anti-deuteron and anti-He3 nuclei in Pb-Pb collisions at sNN=2.76 TeV has been studied using the ALICE detector at the LHC.
Abstract: The production of (anti-)deuteron and (anti-)He3 nuclei in Pb-Pb collisions at sNN=2.76 TeV has been studied using the ALICE detector at the LHC. The spectra exhibit a significant hardening with increasing centrality. Combined blast-wave fits of several particles support the interpretation that this behavior is caused by an increase of radial flow. The integrated particle yields are discussed in the context of coalescence and thermal-statistical model expectations. The particle ratios, He3/d and He3/p, in Pb-Pb collisions are found to be in agreement with a common chemical freeze-out temperature of Tchem≈156 MeV. These ratios do not vary with centrality which is in agreement with the thermal-statistical model. In a coalescence approach, it excludes models in which nucleus production is proportional to the particle multiplicity and favors those in which it is proportional to the particle density instead. In addition, the observation of 31 anti-tritons in Pb-Pb collisions is reported. For comparison, the deuteron spectrum in pp collisions at s=7 TeV is also presented. While the p/π ratio is similar in pp and Pb-Pb collisions, the d/p ratio in pp collisions is found to be lower by a factor of 2.2 than in Pb-Pb collisions.

193 citations

Journal ArticleDOI
Sadaharu Uehara, Y. Watanabe1, H. Nakazawa2, I. Adachi  +156 moreInstitutions (49)
TL;DR: In this paper, the pion transition form factor, F(Q(2)), is measured for the kinematical region 4 GeV2 <= Q(2) <= 40 GeV 2, where -Q 2 is the invariant-mass squared of a virtual photon.
Abstract: We report a measurement of the process gamma gamma* -> pi(0) with a 759 fb(-1) data sample recorded with the Belle detector at the KEKB asymmetric-energy e(+)e(-) collider. The pion transition form factor, F(Q(2)), is measured for the kinematical region 4 GeV2 <= Q(2) <= 40 GeV2, where -Q(2) is the invariant-mass squared of a virtual photon. The measured values of Q(2)vertical bar F(Q(2))vertical bar agree well with the previous measurements below Q(2) similar or equal to 9 GeV2 but do not exhibit the rapid growth in the higher Q(2) region seen in another recent measurement, which exceeds the asymptotic QCD expectation by as much as 50%.

190 citations

Journal ArticleDOI
Arnauld Albert1, Michel André2, M. Anghinolfi3, Miguel Ardid4  +1987 moreInstitutions (227)
TL;DR: In this paper, the authors search for high-energy neutrinos from the binary neutron star merger in the GeV-EeV energy range using the Antares, IceCube, and Pierre Auger Observatories.
Abstract: The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), indicating particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the GeV–EeV energy range using the Antares, IceCube, and Pierre Auger Observatories. No neutrinos directionally coincident with the source were detected within ±500 s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. We further carried out an extended search in the direction of the source for high-energy neutrinos within the 14 day period following the merger, but found no evidence of emission. We used these results to probe dissipation mechanisms in relativistic outflows driven by the binary neutron star merger. The non-detection is consistent with model predictions of short GRBs observed at a large off-axis angle.

189 citations

Journal ArticleDOI
B. Abi1, R. Acciarri2, M. A. Acero3, George Adamov4  +966 moreInstitutions (155)
TL;DR: The Deep Underground Neutrino Experiment (DUNE) as discussed by the authors is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model.
Abstract: The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE's physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology.

187 citations


Authors

Showing all 1155 results

NameH-indexPapersCitations
Hyun-Chul Kim1764076183227
Yang Yang1642704144071
Yongsun Kim1562588145619
Jongmin Lee1502257134772
Teruki Kamon1422034115633
G. Bauer131114783657
Jung-Hyun Kim113119556181
Jin Yong Lee10775755220
U. K. Yang10378254135
Sang Un Ahn8239122067
G. Kang8121050549
Y. D. Oh8055324043
M. K. M. Bader7918252738
H. J. Jang7319432564
Chunglee Kim7115617096
Network Information
Related Institutions (5)
KAIST
77.6K papers, 1.8M citations

85% related

Kyungpook National University
42.1K papers, 834.6K citations

84% related

Korea University
82.4K papers, 1.8M citations

84% related

Kyung Hee University
46.5K papers, 953.5K citations

83% related

Sungkyunkwan University
56.4K papers, 1.3M citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
20223
2021150
2020154
2019141
2018128