scispace - formally typeset
Search or ask a question
Institution

Rhône-Poulenc

About: Rhône-Poulenc is a based out in . It is known for research contribution in the topics: Alkyl & Catalysis. The organization has 8909 authors who have published 8934 publications receiving 182241 citations. The organization is also known as: Rhone-Poulenc.


Papers
More filters
Journal ArticleDOI
J. Mugnier1, Gerard Jung1
TL;DR: Survival seemed to be more directly related to some properties of the water in the biopolymer than to the a(w), which alone was not a sufficient explanation for the deterioration of the inocula.
Abstract: Survival of bacteria (Rhizobium, Agrobacterium, and Arthrobacter spp.), fungal spores (Penicillium sp.), and yeasts (Saccharomyces sp.) was studied in relation to water activity (aw) and the presence of nutritive solutes. The cells were entrapped in polysaccharide gels, as is done to immobilize cells or enzymes, and then dehydrated. The number of living cells (1010 g of dry polymer−1) remained constant for periods of storage of >3 years at 28°C when the inocula were kept at an aw of <0.069. At aw values between 0.069 and 0.83 the number of survivors diminished more and more rapidly as the aw was raised. For a given aw and organism, there were large differences in survival rate as a function of the nutritive solutes used to culture the microorganisms. Low-molecular-weight compounds (with three or five carbon atoms) had a deleterious effect on survival, whereas compounds of higher molecular weight (C6 to C12) had a protecting effect. Thus, the aw alone was not a sufficient explanation for the deterioration of the inocula. Survival seemed to be more directly related to some properties of the water in the biopolymer. New concepts such as the discontinuity of properties of water and the point of mobilization of solutes, already proposed by Duckworth and Kelly (J. Food Technol. 8:105-113, 1973) and Seow (J. Sci. Food Agric., 26:535-536, 1975), have been taken into consideration to explain the interactions of water with the biopolymer and their specific effects on the microorganisms.

177 citations

Journal ArticleDOI
TL;DR: In this article, the coalescence of latex particles is investigated through small-angle neutron scattering and electron microscopy, where the particles are made of a soft polymeric core protected by a hydrophilic membrane.
Abstract: The coalescence of latex particles is investigated through small-angle neutron scattering and electron microscopy. The particles are made of a soft polymeric core protected by a hydrophilic membrane, and they are dispersed in water. This dispersion is spread on a substrate, and water is removed to form a dry film. As the membranes of neighboring particles come into contact, they may break up to allow fusion of the particle cores. This is found to occur when the membranes are made of short-chain surfactant molecules; then all hydrophilic material is expelled to the film surface or to large isolated lumps. Alternatively, the membranes may remain until the film is completely dry; this is found to occur when they are made of hydrophilic polymers which are grafted onto the core. Hence, the fusion of particles is controlled by the connectivity of membranes.

177 citations

Journal ArticleDOI
TL;DR: It is proposed that oxalate oxidase could have a role in plant defense through the production of H2O2 and is induced in barley leaves during infection by the fungus Erysiphe graminis f.
Abstract: Oxalate oxidase activity was detected in situ during the development of barley seedlings. The presence of germin-like oxalate oxidase was confirmed by immunoblotting using an antibody directed against wheat germin produced in Escherichia coli, which is shown to cross-react with barley (Hordeum vulgare) oxalate oxidase and by enzymatic assay after electrophoresis of the protein extracts on polyacrylamide gels. In 3-d-old barley seedlings, oxalate oxidase is localized in the epidermal cells of the mature region of primary roots and in the coleorhiza. After 10 d of growth, the activity is detectable only in the coleorhiza. Moreover, we show that oxalate oxidase is induced in barley leaves during infection by the fungus Erysiphe graminis f. sp. hordei but not by wounding. Thus, oxalate oxidase is a new class of proteins that responds to pathogen attack. We propose that oxalate oxidase could have a role in plant defense through the production of H2O2.

177 citations

Journal ArticleDOI
TL;DR: CPT-11 is an interesting moderately effective drug in pancreatic cancer and the main toxicities were diarrhea, leukocytopenia, asthenia, nausea and vomiting, which were reversible and manageable with anti-emetics and prophylactic or curative antidiarrheal agents.

176 citations

Journal ArticleDOI
TL;DR: The identification of distinct pharmacological PDE4 forms may have therapeutic consequences since it may be possible to synthesize potent inhibitors of LPDE4 with low affinity for HARBS which should, theoretically, be less emetic.

176 citations


Authors

Showing all 8909 results

NameH-indexPapersCitations
Bart Staels15282486638
Joseph Schlessinger15049298862
Jean-Marie Lehn123105484616
Angus C. Nairn11846944330
Allan I. Basbaum11435555532
Patrick Couvreur11167856735
Joël Vandekerckhove10745238241
Jules A. Hoffmann10624443596
Johan Richard9549925915
Jacques Mallet8140824502
Roland Douce8028418239
David Givol8026020057
Jean-Antoine Girault7724619592
Michel Perricaudet7629620063
Jean-Marie Basset7573723390
Network Information
Related Institutions (5)
Merck & Co.
48K papers, 1.9M citations

89% related

Bristol-Myers Squibb
21K papers, 932.5K citations

88% related

GlaxoSmithKline
21.1K papers, 1.1M citations

87% related

Novartis
50.5K papers, 1.9M citations

87% related

Eli Lilly and Company
22.8K papers, 946.7K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20201
20161
20119
201024
20095
20081