scispace - formally typeset
Search or ask a question
Institution

Sainsbury Laboratory

FacilityNorwich, United Kingdom
About: Sainsbury Laboratory is a facility organization based out in Norwich, United Kingdom. It is known for research contribution in the topics: Gene & Effector. The organization has 297 authors who have published 341 publications receiving 44204 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A system based on co-expression of a viral-encoded suppressor of gene silencing, the p19 protein of tomato bushy stunt virus, that prevents the onset of PTGS in the infiltrated tissues and allows high level of transient expression is described.
Abstract: Transient gene expression is a fast, flexible and reproducible approach to high-level expression of useful proteins. In plants, recombinant strains of Agrobacterium tumefaciens can be used for transient expression of genes that have been inserted into the T-DNA region of the bacterial Ti plasmid. A bacterial culture is vacuum-infiltrated into leaves, and upon T-DNA transfer, there is ectopic expression of the gene of interest in the plant cells. However, the utility of the system is limited because the ectopic protein expression ceases after 2-3 days. Here, we show that post-transcriptional gene silencing (PTGS) is a major cause for this lack of efficiency. We describe a system based on co-expression of a viral-encoded suppressor of gene silencing, the p19 protein of tomato bushy stunt virus (TBSV), that prevents the onset of PTGS in the infiltrated tissues and allows high level of transient expression. Expression of a range of proteins was enhanced 50-folds or more in the presence of p19 so that protein purification could be achieved from as little as 100 mg of infiltrated leaf material. The effect of p19 was not saturated in cells that had received up to four individual T-DNAs and persisted until leaf senescence. Because of its simplicity and rapidity, we anticipate that the p19-enhanced expression system will have value in industrial production as well as a research tool for isolation and biochemical characterisation of a broad range of proteins without the need for the time-consuming regeneration of stably transformed plants.

1,830 citations

Journal ArticleDOI
19 May 2006-Cell
TL;DR: It is shown that flagellin and EF-Tu activate a common set of signaling events and defense responses but without clear synergistic effects, and that plant defense responses induced by PAMPs such as EF- Tu reduce transformation by Agrobacterium.

1,758 citations

Journal ArticleDOI
TL;DR: Emerging evidence suggests that hormone signaling pathways regulated by abscisic acid, salicylic acid, jasmonic acid and ethylene, as well as ROS signaling pathways, play key roles in the crosstalk between biotic and abiotic stress signaling.

1,677 citations

Journal ArticleDOI
26 Jul 2007-Nature
TL;DR: BAK1 is shown to have a functional role in PRR-dependent signalling, which initiates innate immunity, and evidence is provided that FLS2 and BAK1 form a complex in vivo, in a specific ligand-dependent manner, within the first minutes of stimulation with flagellin.
Abstract: Plants sense potential microbial invaders by using pattern-recognition receptors to recognize pathogen-associated molecular patterns (PAMPs). In Arabidopsis thaliana, the leucine-rich repeat receptor kinases flagellin-sensitive 2 (FLS2) (ref. 2) and elongation factor Tu receptor (EFR) (ref. 3) act as pattern-recognition receptors for the bacterial PAMPs flagellin and elongation factor Tu (EF-Tu) (ref. 5) and contribute to resistance against bacterial pathogens. Little is known about the molecular mechanisms that link receptor activation to intracellular signal transduction. Here we show that BAK1 (BRI1-associated receptor kinase 1), a leucine-rich repeat receptor-like kinase that has been reported to regulate the brassinosteroid receptor BRI1 (refs 6,7), is involved in signalling by FLS2 and EFR. Plants carrying bak1 mutations show normal flagellin binding but abnormal early and late flagellin-triggered responses, indicating that BAK1 acts as a positive regulator in signalling. The bak1-mutant plants also show a reduction in early, but not late, EF-Tu-triggered responses. The decrease in responses to PAMPs is not due to reduced sensitivity to brassinosteroids. We provide evidence that FLS2 and BAK1 form a complex in vivo, in a specific ligand-dependent manner, within the first minutes of stimulation with flagellin. Thus, BAK1 is not only associated with developmental regulation through the plant hormone receptor BRI1 (refs 6,7), but also has a functional role in PRR-dependent signalling, which initiates innate immunity.

1,659 citations

Journal ArticleDOI
03 Jun 2010-Nature
TL;DR: This study demonstrates the feasibility of GWA studies in A. thaliana and suggests that the approach will be appropriate for many other organisms, particularly when inbred lines are available.
Abstract: Although pioneered by human geneticists as a potential solution to the challenging problem of finding the genetic basis of common human diseases, genome-wide association (GWA) studies have, owing to advances in genotyping and sequencing technology, become an obvious general approach for studying the genetics of natural variation and traits of agricultural importance. They are particularly useful when inbred lines are available, because once these lines have been genotyped they can be phenotyped multiple times, making it possible (as well as extremely cost effective) to study many different traits in many different environments, while replicating the phenotypic measurements to reduce environmental noise. Here we demonstrate the power of this approach by carrying out a GWA study of 107 phenotypes in Arabidopsis thaliana, a widely distributed, predominantly self-fertilizing model plant known to harbour considerable genetic variation for many adaptively important traits. Our results are dramatically different from those of human GWA studies, in that we identify many common alleles of major effect, but they are also, in many cases, harder to interpret because confounding by complex genetics and population structure make it difficult to distinguish true associations from false. However, a-priori candidates are significantly over-represented among these associations as well, making many of them excellent candidates for follow-up experiments. Our study demonstrates the feasibility of GWA studies in A. thaliana and suggests that the approach will be appropriate for many other organisms.

1,525 citations


Authors

Showing all 329 results

NameH-indexPapersCitations
Jonathan D. G. Jones12941780908
David C. Baulcombe11028750828
Sophien Kamoun10436536968
Brian J. Staskawicz8618527504
Ken Shirasu7421420236
Nicholas J. Talbot7124029205
Giles E. D. Oldroyd6913218595
Dario Leister6923016720
Cyril Zipfel6918522688
David A. Jones6720717277
Martin Parniske6514116223
Anne Osbourn6517714898
Silke Robatzek5911616098
Kim E. Hammond-Kosack5916418286
Michael J. Daniels51988879
Network Information
Related Institutions (5)
Wellcome Trust Sanger Institute
9.6K papers, 1.2M citations

89% related

Norwich Research Park
6.4K papers, 417.3K citations

89% related

European Bioinformatics Institute
10.5K papers, 999.6K citations

89% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

88% related

Cold Spring Harbor Laboratory
6.6K papers, 1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202322
202241
20218
202014
20198
201822