scispace - formally typeset
Search or ask a question
Institution

Scottish Association for Marine Science

FacilityOban, United Kingdom
About: Scottish Association for Marine Science is a facility organization based out in Oban, United Kingdom. It is known for research contribution in the topics: Sea ice & Benthic zone. The organization has 524 authors who have published 1765 publications receiving 70783 citations. The organization is also known as: SAMS & Scottish Marine Station for Scientific Research.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors examine the role of these effects in achieving marine environmental targets in Europe under the Marine Strategy Framework Directive and the implications for future management, indicating the increased importance that these temporal phenomena give to reducing future pressures.
Abstract: Our ability to meet environmental targets is often constrained by processes and events that occur over long timescales and which may not be considered during the planning process. We illustrate with examples and define three major types of temporal scale phenomena of relevance to marine managers: Memory and Future Effects (jointly called Legacy Effects) and Committed Behaviors. We examine the role of these effects in achieving marine environmental targets in Europe under the Marine Strategy Framework Directive and the implications for future management, indicating the increased importance that these temporal phenomena give to reducing future pressures.

29 citations

Journal ArticleDOI
TL;DR: In this paper, the integration of biophysical, ecological and social components; the uncertainties of diverse data sources; and the development of flexible coastal interventions are explored, which aims primarily at adaptation to global change and uncertainties, and to managing and integrating social aspects and biophysical components based on the flows of energy and matter.
Abstract: Change is inherent in coastal systems, which are amongst the most dynamic ones on Earth. Increasing anthropogenic pressure on coastal zones interferes with natural coastal dynamics and can cause ecosystem imbalances that render the zones less stable. Furthermore, human occupation of coastal zones often requires an uncharacteristic degree of stability for these inherently dynamic coastal systems. Coastal management teams face multifaceted challenges in protecting, rehabilitating and conserving coastal systems. Diverse monitoring schemes and modelling tools have been developed to address these challenges. In this article, we explore various perspectives: the integration of biophysical, ecological and social components; the uncertainties of diverse data sources; and the development of flexible coastal interventions. We propose general criteria and guidance for an Ecosystem-based Management (EbM) to coastal management, which aims primarily at adaptation to global change and uncertainties, and to managing and integrating social aspects and biophysical components based on the flows of energy and matter.

29 citations

Journal ArticleDOI
TL;DR: Lien et al. as discussed by the authors reported that between 1979 and 2008, 1,209 large whale entanglements were recorded in Newfoundland and Labrador, mostly humpback whales (Megaptera novaeangliae; 80%) and minke whales (Balaenoptera acutorostrata; 15%).
Abstract: Entanglements of large whales in commercial fisheries in Newfoundland and Labrador, Canada, have been consistently recorded since 1979, as part of a program aimed at releasing captured animals and reducing costs to fishermen. This data set represented an opportunity to identify fisheries posing particular entanglement risks to local whale populations. Data were assessed over the periods 1979–1992 and 1993–2008, corresponding to distinct phases in fisheries distribution and intensity. Between 1979 and 2008, 1,209 large whale entanglements were recorded in Newfoundland and Labrador. These were mostly humpback whales (Megaptera novaeangliae; 80%) and minke whales (Balaenoptera acutorostrata; 15%). Dramatic declines in reported inshore whale entanglement rates were observed following the 1992 moratorium on Atlantic cod (Gadus morhua) fisheries. Recently, more entanglements have been reported further offshore, largely due to expansion of fisheries targeting snow crab (Chionoecetes opilio). For all whale species, entanglement 1 This article is dedicated to Dr. Jon Lien (1939–2010), who was instrumental in setting up the Large Whale Entrapment Program through Memorial University’s Whale Research Group, and who for more than 30 yr worked tirelessly on behalf of both whales and fishermen in Newfoundland and Labrador. A large proportion of the data described here was gathered by Jon and his associates, and his role in resolving whale entanglements in Newfoundland fisheries cannot be overstated. He will be sorely missed.

29 citations

Journal ArticleDOI
TL;DR: Results indicate that feeding on microbes may be a highly favorable strategy for these invertebrates, although the potential for carbon to become limiting when consuming a microbial diet exists because of the inefficiencies of trophic transfer within the microbial food web.
Abstract: Detritus represents an important pool in the global carbon cycle, providing a food source for detritivorous invertebrates that are conspicuous components of almost all ecosystems. Our knowledge of how these organisms meet their nutritional demands on a diet that is typically comprised of refractory, carbon-rich compounds nevertheless remains incomplete. ‘Trophic upgrading’ of detritus by the attached microbial community (enhancement of zooplankton diet by the inclusion of heterotrophic protozoans) represents a potential source of nutrition for detritivores as both bacteria and their flagellated protistan predators are capable of biosynthesizing essential micronutrients such as polyunsaturated fatty acids (PUFAs). There is however a trade-off because although microbes enhance the substrate in terms of its micronutrient content, the quantity of organic carbon is diminished though metabolic losses as energy passes through the microbial food web. Here, we develop a simple stoichiometric model to examine this trade-off in the nutrition of detritivorous copepods inhabiting the mesopelagic zone of the ocean, focusing on their requirements for carbon and an essential PUFA, docosahexaenoic acid (DHA). Results indicate that feeding on microbes may be a highly favourable strategy for these invertebrates, although the potential for carbon to become limiting when consuming a microbial diet exists because of the inefficiencies of trophic transfer within the microbial food web. Our study highlights the need for improved knowledge at the detritus-microbe-metazoan interface, including interactions between the physiology and ecology of the associated organisms.

28 citations

Journal ArticleDOI
TL;DR: Iron uptake mechanisms in “algal-associated” VF-producers are characterized and regulation of iron uptake and transport genes by light is consistent with the light driven algal–bacterial “carbon for iron mutualism” hypothesis in the marine environment.
Abstract: Iron is an essential element for oceanic microbial life but its low bioavailability limits microorganisms in large areas of the oceans. To acquire this metal many marine bacteria produce organic chelates that bind and transport iron (siderophores). We have previously shown that algal-associated heterotrophic bacteria belonging to the γ-proteobacterial Marinobacter genus release the siderophore vibrioferrin (VF). The iron-VF complex was shown to be both far more photolabile than all previously examined photolabile siderophores and to generate a photoproduct incapable of re-chelating the released iron. Thus, the photo-generated iron was shown to be highly bioavailable both to the producing bacterium and its algal partner. In exchange, we proposed that algal cells produced dissolved organic matter that helped support bacterial growth and ultimately fueled the biosynthesis of VF through a light-dependent “carbon for iron mutualism”. While our knowledge of the importance of light to phototrophs is vast, there are almost no studies that examine the effects of light on microbial heterotrophs. Here, we characterize iron uptake mechanisms in “algal-associated” VF-producers. Fe uptake by a VF knock-out mutant mimics the wild-type strain and demonstrates the versatility of iron uptake mechanisms in Marinobacter VF-producers. We also show that VF-producers selectively regulate a subset of their siderophore-dependent iron uptake genes in response to light exposure. The regulation of iron uptake and transport genes by light is consistent with the light driven algal–bacterial “carbon for iron mutualism” hypothesis in the marine environment.

28 citations


Authors

Showing all 534 results

NameH-indexPapersCitations
David H. Green9228830311
Ronnie N. Glud6922813615
Harald Schwalbe6648416243
Michael P. Meredith5823413381
Michael T. Burrows5520512902
Gabriele M. König5530710374
Peter Wadhams532198095
Mikhail V. Zubkov501307781
Wolfram Meyer-Klaucke471427560
Gurvan Michel461108416
Paul Tett461506585
Carl J. Carrano462047501
Frithjof C. Küpper451437528
Geraint A. Tarling441716047
Christopher J. S. Bolch411055599
Network Information
Related Institutions (5)
IFREMER
12.3K papers, 468.8K citations

93% related

Alfred Wegener Institute for Polar and Marine Research
10.7K papers, 499.6K citations

93% related

National Marine Fisheries Service
7K papers, 305K citations

91% related

Natural Environment Research Council
4.2K papers, 254.5K citations

90% related

Woods Hole Oceanographic Institution
18.3K papers, 1.2M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20235
202219
2021128
2020151
201985
201896