scispace - formally typeset
Search or ask a question
Institution

Scottish Association for Marine Science

FacilityOban, United Kingdom
About: Scottish Association for Marine Science is a facility organization based out in Oban, United Kingdom. It is known for research contribution in the topics: Sea ice & Benthic zone. The organization has 524 authors who have published 1765 publications receiving 70783 citations. The organization is also known as: SAMS & Scottish Marine Station for Scientific Research.


Papers
More filters
Journal ArticleDOI
TL;DR: The lifeform approach allows the collation of many different data types and time-series across the NW European shelf, providing a crucial evidence base for informing ecosystem-based management, and the development of regional adaptation plans.
Abstract: Increasing direct human pressures on the marine environment, coupled with climate-driven changes, is a concern to marine ecosystems globally. This requires the development and monitoring of ecosystem indicators for effective management and adaptation planning. Plankton lifeforms (broad functional groups) are sensitive indicators of marine environmental change and can provide a simplified view of plankton biodiversity, building an understanding of change in lower trophic levels. Here, we visualize regional-scale multi-decadal trends in six key plankton lifeforms as well as their correlative relationships with sea surface temperature (SST). For the first time, we collate trends across multiple disparate surveys, comparing the spatially and temporally extensive Continuous Plankton Recorder (CPR) survey (offshore) with multiple long-term fixed station-based time-series (inshore) from around the UK coastline. These analyses of plankton lifeforms showed profound long-term changes, which were coherent across large spatial scales. For example, ‘diatom’ and ‘meroplankton’ lifeforms showed strong alignment between surveys and coherent regional-scale trends, with the 1998–2017 decadal average abundance of meroplankton being 2.3 times that of 1958–1967 for CPR samples in the North Sea. This major, shelf-wide increase in meroplankton correlated with increasing SSTs, and contrasted with a general decrease in holoplankton (dominated by small copepods), indicating a changing balance of benthic and pelagic fauna. Likewise, inshore-offshore gradients in dinoflagellate trends, with contemporary increases inshore contrasting with multi-decadal decreases offshore (approx. 75% lower decadal mean abundance), urgently require the identification of causal mechanisms. Our lifeform approach allows the collation of many different data types and time-series across the NW European shelf, providing a crucial evidence base for informing ecosystem-based management, and the development of regional adaptation plans.

43 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the issues surrounding the impacts of tidal-stream renewable energy devices on marine vertebrates and address the questions regulators, developers and other stakeholders need to consider when agreeing monitoring programs for these receptors.
Abstract: Marine tidal-stream renewable energy devices (MREDs) are beginning to move from demonstration to early commercial deployment. However, the ecological impacts which may result when large arrays of these devices are deployed are unknown. This uncertainty is placing a considerable burden on developers who must collect biological data through baseline and post-deployment monitoring programs under the Environmental Impact Assessment process. Regulators and other stakeholders are often particularly concerned about impacts on marine vertebrates (fish, seabirds and mammals) because many of these receptors are of high conservation and public concern. Unfortunately monitoring for most marine vertebrates is challenging and expensive, especially in the energetic waters where tidal-stream MREDs will be deployed. Surveys for marine vertebrates often have low statistical power and so are likely to fail to detect all but substantial changes in abundance. Furthermore, many marine vertebrate species have large geographical ranges so that even if local changes in abundance are detected, they cannot usually be related to the wider populations. Much of the monitoring currently being undertaken at tidal-stream MRED development sites is thus leading to a ‘data-rich but information-poor’ (DRIP) situation. Such an approach adds to development costs whilst contributing little to wider ecosystem-based understanding. In the present article we discuss the issues surrounding the impacts of tidal-stream MREDs on marine vertebrates and address the questions regulators, developers and other stakeholders need to consider when agreeing monitoring programs for these receptors.

43 citations

Journal ArticleDOI
TL;DR: In this article, the authors compared and contrasted 11 European case studies to identify challenges and opportunities toward the operationalization of marine and coastal ecosystem service (MCES) assessments in Europe and found that significant limitations among the 11 assessments were the absence of shared understanding of the ES concept, data and knowledge gaps, difficulties in accounting for marine social-ecological systems complexity and partial stakeholder involvement.
Abstract: We compared and contrasted 11 European case studies to identify challenges and opportunities toward the operationalization of marine and coastal ecosystem service (MCES) assessments in Europe. This work is the output of a panel convened by the Marine Working Group of the Ecosystem Services Partnership in September 2016. The MCES assessments were used to (1) address multiple policy objectives simultaneously, (2) interpret EU-wide policies to smaller scales and (3) inform local decision-making. Most of the studies did inform decision makers, but only in a few cases, the outputs were applied or informed decision-making. Significant limitations among the 11 assessments were the absence of shared understanding of the ES concept, data and knowledge gaps, difficulties in accounting for marine social–ecological systems complexity and partial stakeholder involvement. The findings of the expert panel call for continuous involvement of MCES ‘end users’, integrated knowledge on marine social–ecological systems, defining thresholds to MCES use and raising awareness to the general public. Such improvements at the intersection of science, policy and practice are essential starting points toward building a stronger science foundation supporting management of European marine ecosystems.

43 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of the water mass properties (temperature, salinity, food supply, carbonate chemistry and oxygen) on deep-sea benthic megafauna (from species to community level) were discussed in future scenarios of climate change.
Abstract: Circulation patterns in the North Atlantic Ocean have changed and re-organized multiple times over millions of years, influencing the biodiversity, distribution and connectivity patterns of deep-sea species and ecosystems. In this study, we review the effects of the water mass properties (temperature, salinity, food supply, carbonate chemistry and oxygen) on deep-sea benthic megafauna (from species to community level) and discussed in future scenarios of climate change. We focus on the key oceanic controls on deep-sea megafauna biodiversity and biogeography patterns. We place particular attention on cold-water corals and sponges, as these are ecosystem-engineering organisms that constitute vulnerable marine ecosystems with high associated biodiversity. Besides documenting the current state of the knowledge on this topic, a future scenario for water mass properties in the deep North Atlantic basin was predicted. The pace and severity of climate change in the deep-sea will vary across regions. However, predicted water mass properties showed that all regions in the North Atlantic will be exposed to multiple stressors by 2100, experiencing at least one critical change in water temperature (+2°C), organic carbon fluxes (reduced up to 50 %), ocean acidification (pH reduced up to 0.3), aragonite saturation horizon (shoaling above 1000 m) and/or reduction in dissolved oxygen (5%). The northernmost regions of the North Atlantic will suffer the greatest impacts. Warmer and more acidic oceans will drastically reduce the suitable habitat for ecosystem-engineers, with severe consequences such as declines in population densities, even compromising their long-term survival, loss of biodiversity and reduced biogeographic distribution that might compromise connectivity at large scales. These effects can be aggravated by reductions in carbon fluxes, particularly in areas where food availability is already limited. Declines in benthic biomass and biodiversity will diminish ecosystem services such as habitat provision, nutrient cycling, etc. This study shows that the deep-sea vulnerable marine ecosystems affected by contemporary anthropogenic impacts and with the the ongoing climate change impacts are unlikely to withstand additional pressures from more intrusive human activities. This study serves also as a warning to protect these ecosystems through regulations and by tempering the ongoing socio-political drivers for increasing exploitation of marine resources.

43 citations

Journal ArticleDOI
TL;DR: In this article, the authors used high resolution 0.25° climatology to analyze sea surface temperature variability over the 20th century in two contrasting regions of the sea and found that the deep Black Sea was cooling during the first three quarters of the century and was warming in the last 15-20 years.
Abstract: . There is growing understanding that recent deterioration of the Black Sea ecosystem was partly due to changes in the marine physical environment. This study uses high resolution 0.25° climatology to analyze sea surface temperature variability over the 20th century in two contrasting regions of the sea. Results show that the deep Black Sea was cooling during the first three quarters of the century and was warming in the last 15–20 years; on aggregate there was a statistically significant cooling trend. The SST variability over the Western shelf was more volatile and it does not show statistically significant trends. The cooling of the deep Black Sea is at variance with the general trend in the North Atlantic and may be related to the decrease of westerly winds over the Black Sea, and a greater influence of the Siberian anticyclone. The timing of the changeover from cooling to warming coincides with the regime shift in the Black Sea ecosystem.

43 citations


Authors

Showing all 534 results

NameH-indexPapersCitations
David H. Green9228830311
Ronnie N. Glud6922813615
Harald Schwalbe6648416243
Michael P. Meredith5823413381
Michael T. Burrows5520512902
Gabriele M. König5530710374
Peter Wadhams532198095
Mikhail V. Zubkov501307781
Wolfram Meyer-Klaucke471427560
Gurvan Michel461108416
Paul Tett461506585
Carl J. Carrano462047501
Frithjof C. Küpper451437528
Geraint A. Tarling441716047
Christopher J. S. Bolch411055599
Network Information
Related Institutions (5)
IFREMER
12.3K papers, 468.8K citations

93% related

Alfred Wegener Institute for Polar and Marine Research
10.7K papers, 499.6K citations

93% related

National Marine Fisheries Service
7K papers, 305K citations

91% related

Natural Environment Research Council
4.2K papers, 254.5K citations

90% related

Woods Hole Oceanographic Institution
18.3K papers, 1.2M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20235
202219
2021128
2020151
201985
201896