scispace - formally typeset
Search or ask a question
Institution

Scottish Association for Marine Science

FacilityOban, United Kingdom
About: Scottish Association for Marine Science is a facility organization based out in Oban, United Kingdom. It is known for research contribution in the topics: Sea ice & Benthic zone. The organization has 524 authors who have published 1765 publications receiving 70783 citations. The organization is also known as: SAMS & Scottish Marine Station for Scientific Research.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an ecosystem model with 45 functional groups, including a detritus group, two primary producer groups, eight invertebrate groups, 29 fish groups, three marine mammal groups, a turtle and a seabird group was built.
Abstract: The Marine Strategy Framework Directive intends to adopt ecosystem-based management for resources, biodiversity and habitats that puts emphasis on maintaining the health of the ecosystem alongside appropriate human use of the marine environment, for the benefit of current and future generations. Within the overall framework of ecosystem-based management, ecosystem models are tools to evaluate and gain insights in ecosystem properties. The low data availability and complexity of modelling deep-water ecosystems has limited the application of ecosystem models to few deep-water ecosystems. Here, we aim to develop an ecosystem model for the deep-sea and open ocean in the Azores exclusive economic zone with the overarching objective of characterising the food-web and ecosystem structure of the ecosystem. An ecosystem model with 45 functional groups, including a detritus group, two primary producer groups, eight invertebrate groups, 29 fish groups, three marine mammal groups, a turtle and a seabird group was built. Overall data quality measured by the pedigree index was estimated to be higher than the mean value of all published models. Therefore, the model was built with source data of an overall reasonable quality, especially considering the normally low data availability for deep-sea ecosystems. The total biomass (excluding detritus) of the modelled ecosystem for the whole area was calculated as 24.7 t km-². The mean trophic level for the total marine catch of the Azores was estimated to be 3.95, similar to the trophic level of the bathypelagic and medium-size pelagic fish. Trophic levels for the different functional groups were estimated to be similar to those obtained with stable isotopes and stomach contents analyses, with some exceptions on both ends of the trophic spectra. Omnivory indices were in general low, indicating prey speciation for the majority of the groups. Cephalopods, pelagic sharks and toothed whales were identified as groups with key ecological roles in the ecosystem. Due to concerns on the use of ecosystem models with low confidence in exploring management decisions and ecological theories, the current version of this model should only be use with caution until biomass estimates are validated with survey data or the model is fitted to time

26 citations

Journal ArticleDOI
TL;DR: Assessment of the composition of the added DOM suggested that the observed dynamics were related to organic matter composition rather than molecular size as, within the Si- and N-DOM, the proportions of low and high molecular weight compounds were similar, but the polysaccharide and protein signatures were different.

26 citations

Journal ArticleDOI
TL;DR: The results generally underline the conclusion that for the Norwegian coast area it is important that amphidomatacean species are taken into account in future studies and monitoring programs.

26 citations

Journal ArticleDOI
TL;DR: It is clear that changes in population structure can extend beyond the depth at which fishing takes place, highlighting the importance for also considering the indirect effects on deep-sea fish populations.
Abstract: A time series from 1977–1989 and 2000–2002 of scientific trawl surveys in the Porcupine Seabight and adjacent abyssal plain of the NE Atlantic was analysed to assess changes in demersal fish biomass and length frequency. These two periods coincide with the onset of the commercial deep-water fishery in the late 1970s and the onset of the regulation of the fishery in the early 2000's, which allowed us to investigate changes in the relationship between total demersal fish biomass and depth between the pre- and post commercial fishing periods, as well as changes in the biomass (kg km −2 ) depth distribution and length frequency distribution of the most dominant fish species. Our results show a decline in total demersal fish biomass of 36% within the depth range of the commercial fishery ( Coryphaenoides rupestris decreased by 57%) and non-target (e.g. C. guentheri and Antimora rostrata ) species, not all species declined significantly. Changes in the overall length-frequency distribution were detected for 5 out of the 8 dominant species occupying depth ranges both within and outside the maximum depth for commercial trawling. This suggests that whilst there is evidence for likely fishery impacts on the biomass distribution of the demersal fish population as a whole, species-specific impacts are highly variable. It is clear that changes in population structure can extend beyond the depth at which fishing takes place, highlighting the importance for also considering the indirect effects on deep-sea fish populations.

25 citations

Journal ArticleDOI
TL;DR: In this paper, a collection of papers devoted to new technologies and observational results as well as model simulations are presented, which are facilitating new insights into optical variability and light propagation in the ocean as they are affected by changing atmospheric and oceanic conditions.
Abstract: [1] Optical variability occurs in the near-surface and upper ocean on very short time and space scales (e.g., milliseconds and millimeters and less) as well as greater scales. This variability is caused by solar, meteorological, and other physical forcing as well as biological and chemical processes that affect optical properties and their distributions, which in turn control the propagation of light across the air-sea interface and within the upper ocean. Recent developments in several technologies and modeling capabilities have enabled the investigation of a variety of fundamental and applied problems related to upper ocean physics, chemistry, and light propagation and utilization in the dynamic near-surface ocean. The purpose here is to provide background for and an introduction to a collection of papers devoted to new technologies and observational results as well as model simulations, which are facilitating new insights into optical variability and light propagation in the ocean as they are affected by changing atmospheric and oceanic conditions.

25 citations


Authors

Showing all 534 results

NameH-indexPapersCitations
David H. Green9228830311
Ronnie N. Glud6922813615
Harald Schwalbe6648416243
Michael P. Meredith5823413381
Michael T. Burrows5520512902
Gabriele M. König5530710374
Peter Wadhams532198095
Mikhail V. Zubkov501307781
Wolfram Meyer-Klaucke471427560
Gurvan Michel461108416
Paul Tett461506585
Carl J. Carrano462047501
Frithjof C. Küpper451437528
Geraint A. Tarling441716047
Christopher J. S. Bolch411055599
Network Information
Related Institutions (5)
IFREMER
12.3K papers, 468.8K citations

93% related

Alfred Wegener Institute for Polar and Marine Research
10.7K papers, 499.6K citations

93% related

National Marine Fisheries Service
7K papers, 305K citations

91% related

Natural Environment Research Council
4.2K papers, 254.5K citations

90% related

Woods Hole Oceanographic Institution
18.3K papers, 1.2M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20235
202219
2021128
2020151
201985
201896