scispace - formally typeset
Search or ask a question
Institution

Scottish Association for Marine Science

FacilityOban, United Kingdom
About: Scottish Association for Marine Science is a facility organization based out in Oban, United Kingdom. It is known for research contribution in the topics: Sea ice & Benthic zone. The organization has 524 authors who have published 1765 publications receiving 70783 citations. The organization is also known as: SAMS & Scottish Marine Station for Scientific Research.


Papers
More filters
Journal ArticleDOI
15 Aug 2008
TL;DR: In this article, the authors show that the critical parameter controlling fjord-shelf exchange is the density difference between the Fjord water masses and the Atlantic Water, and they provide a full dynamical mechanism for the interaction between water masses at the entrance to rationalize the interannual variability.
Abstract: Exchanges between oceanic and coastal waters are fundamental in setting the hydrography of arctic shelves and fjords. In West Spitsbergen, Atlantic Water from the West Spitsbergen Current exchanges with the seasonally ice-covered waters of the coast and fjords causing a major annual shift in hydrographic conditions. The extent to which Atlantic Water dominates the fjord systems shows significant interannual variability. Hydrographic sections taken between 1999 and 2005 from Isfjorden and the adjacent shelf have been analyzed to identify the causes of the variability in Atlantic Water occupation of the fjord system. By treating the fjord system as a coastal polynya and running a polynya model to quantify the salt release each winter, we conclude that the critical parameter controlling fjord–shelf exchange is the density difference between the fjord water masses and the Atlantic Water. We provide a full dynamical mechanism for the interaction between water masses at the fjord entrance to rationalize the interannual variability.

247 citations

Journal ArticleDOI
TL;DR: In this paper, future changes in marine heatwave (MHW) to the end of the 21st century, as simulated by the CMIP5 global climate model projections, are estimated, with significant increases in MHW intensity and count of annual MHW days.
Abstract: Marine heatwaves (MHWs) are extreme climatic events in oceanic systems that can have devastating impacts on ecosystems, causing abrupt ecological changes and socioeconomic consequences. Several prominent MHWs have attracted scientific and public interest, and recent assessments have documented global and regional increases in their frequency. However, for proactive marine management, it is critical to understand how patterns might change in the future. Here we estimate future changes in MHWs to the end of the 21st century, as simulated by the CMIP5 global climate model projections. Significant increases in MHW intensity and count of annual MHW days are projected to accelerate, with many parts of the ocean reaching a near-permanent MHW state by the late 21st century. The two greenhouse gas emission scenarios considered (Representative Concentration Pathway 4.5 and 8.5) strongly affect the projected intensity of MHW events, the proportion of the globe exposed to permanent MHW states, and the occurrence of the most extreme MHW events. Comparison with simulations of a natural world, without anthropogenic forcing, indicate that these trends have emerged from the expected range of natural variability within the first half of the 21st century. This discrepancy implies a degree of “anthropogenic emergence”, with a departure from the natural MHW conditions that have previously shaped marine ecosystems for centuries or even millennia. Based on these projections we expect impacts on marine ecosystems to be widespread, significant and persistent through the 21st Century.

247 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that the freshening trend of the 1960s-1990s has completely reversed in the upper ocean and that the mean properties of the Atlantic Inflow decrease northwards, but variations seen in the eastern subpolar gyre at 57°N persist with the same amplitude and pattern along the pathways to Fram Strait.
Abstract: Hydrographic time series in the northeast North Atlantic and Nordic Seas show that the freshening trend of the 1960s–1990s has completely reversed in the upper ocean. Since the 1990s temperature and salinity have rapidly increased in the Atlantic Inflow from the eastern subpolar gyre to the Fram Strait. In 2003–2006 salinity values reached the previous maximum last observed around 1960, and temperature values exceeded records. The mean properties of the Atlantic Inflow decrease northwards, but variations seen in the eastern subpolar gyre at 57°N persist with the same amplitude and pattern along the pathways to Fram Strait. Time series correlations and extreme events suggest a time lag of 3–4 years over that distance. This estimate allows predictions to be made; the temperature of Atlantic water in the Fram Strait may start to decline in 2007 or 2008, salinity a year later, but both will remain high at least until 2010.

245 citations

Journal ArticleDOI
TL;DR: In 2006 and 2007, multiple deployments of current meters and optical sensors on landers and moorings were made in the first detailed in situ study of the particle supply to the coral community in the Mingulay Reef complex in the Sea of Hebrides at 140m water depth as mentioned in this paper.
Abstract: In 2006 and 2007, multiple deployments of current meters and optical sensors on landers and moorings were made in the first detailed in situ study of the particle supply to the coral community in the Mingulay Reef complex in the Sea of Hebrides at 140-m water depth. Two distinct and predictable supply mechanisms were resolved. One mechanism consisted of the rapid downwelling of surface water caused by hydraulic control of tidal flow that transports particles from the surface to the corals in less than an hour. The rapid downwelling was recorded on the reef top as a pulse of warm, fluorescent, and relatively clear water at the onset of the flood and ebb tides. The pulse was strongest after flood tide and lasted for up to 3 h. The second mechanism consisted of advection onto the reef of deep bottom water with a high suspended matter load. This advection occurred during peak tides and was combined with topographical current acceleration on the reef top, enhancing delivery of particles to the corals.

242 citations

Journal ArticleDOI
TL;DR: This review provides tools and a broad overview of the regulatory processes of carotenoid production from microalgae and other novel feedstocks for food/feed, nutraceutical and cosmetic industry in Europe, the USA, the People’s Republic of China, and Japan.
Abstract: Microalgae produce a variety of compounds that are beneficial to human and animal health. Among these compounds are carotenoids, which are microalgal pigments with unique antioxidant and coloring properties. The objective of this review is to evaluate the potential of using microalgae as a commercial feedstock for carotenoid production. While microalgae can produce some of the highest concentrations of carotenoids (especially astaxanthin) in living organisms, there are challenges associated with the mass production of microalgae and downstream processing of carotenoids. This review discusses the synthesis of carotenoids within microalgae, their physiological role, large-scale cultivation of microalgae, up- and down-stream processing, commercial applications, natural versus synthetic carotenoids, and opportunities and challenges facing the carotenoid markets. We emphasize legal aspects and regulatory challenges associated with the commercial production of microalgae-based carotenoids for food/feed, nutraceutical and cosmetic industry in Europe, the USA, the People’s Republic of China, and Japan. This review provides tools and a broad overview of the regulatory processes of carotenoid production from microalgae and other novel feedstocks.

239 citations


Authors

Showing all 534 results

NameH-indexPapersCitations
David H. Green9228830311
Ronnie N. Glud6922813615
Harald Schwalbe6648416243
Michael P. Meredith5823413381
Michael T. Burrows5520512902
Gabriele M. König5530710374
Peter Wadhams532198095
Mikhail V. Zubkov501307781
Wolfram Meyer-Klaucke471427560
Gurvan Michel461108416
Paul Tett461506585
Carl J. Carrano462047501
Frithjof C. Küpper451437528
Geraint A. Tarling441716047
Christopher J. S. Bolch411055599
Network Information
Related Institutions (5)
IFREMER
12.3K papers, 468.8K citations

93% related

Alfred Wegener Institute for Polar and Marine Research
10.7K papers, 499.6K citations

93% related

National Marine Fisheries Service
7K papers, 305K citations

91% related

Natural Environment Research Council
4.2K papers, 254.5K citations

90% related

Woods Hole Oceanographic Institution
18.3K papers, 1.2M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20235
202219
2021128
2020151
201985
201896