scispace - formally typeset
Search or ask a question
Institution

Scottish Association for Marine Science

FacilityOban, United Kingdom
About: Scottish Association for Marine Science is a facility organization based out in Oban, United Kingdom. It is known for research contribution in the topics: Sea ice & Benthic zone. The organization has 524 authors who have published 1765 publications receiving 70783 citations. The organization is also known as: SAMS & Scottish Marine Station for Scientific Research.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors evaluate two contrasting paradigms for the assessment of social values in non-monetary terms: an instrumental paradigm involving an objective assessment of the distribution, type and intensity of values that individuals assign to the current state of ecosystems and a deliberative paradigm involving the exploration of desired end states through group discussion.

182 citations

Journal ArticleDOI
TL;DR: Overturning in the Subpolar North Atlantic (OSNAP) as discussed by the authors is a new ocean observing system to understand the link between the meridional overturning circulation and deep water formation.
Abstract: A new ocean observing system has been launched in the North Atlantic in order to understand the linkage between the meridional overturning circulation and deep water formation. For decades oceanographers have understood the Atlantic Meridional Overturning Circulation (AMOC) to be primarily driven by changes in the production of deep water formation in the subpolar and subarctic North Atlantic. Indeed, current IPCC projections of an AMOC slowdown in the 21st century based on climate models are attributed to the inhibition of deep convection in the North Atlantic. However, observational evidence for this linkage has been elusive: there has been no clear demonstration of AMOC variability in response to changes in deep water formation. The motivation for understanding this linkage is compelling since the overturning circulation has been shown to sequester heat and anthropogenic carbon in the deep ocean. Furthermore, AMOC variability is expected to impact this sequestration as well as have consequences for regional and global climates through its effect on the poleward transport of warm water. Motivated by the need for a mechanistic understanding of the AMOC, an international community has assembled an observing system, Overturning in the Subpolar North Atlantic (OSNAP), to provide a continuous record of the trans-basin fluxes of heat, mass and freshwater and to link that record to convective activity and water mass transformation at high latitudes. OSNAP, in conjunction with the RAPID/MOCHA array at 26°N and other observational elements, will provide a comprehensive measure of the three-dimensional AMOC and an understanding of what drives its variability. The OSNAP observing system was fully deployed in the summer of 2014 and the first OSNAP data products are expected in the fall of 2017.

182 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider the characteristic elements of Arctic fjords and the important dynamical processes and show how the intense seasonality of these regions is reflected in the varying stratification of the Fjords, showing that sea ice has a central role in terms of the fjord salinity which ultimately influences the exchange with oceanic waters.
Abstract: Abstract Fjords have long been recognized for their value as sites of sediment deposition, recording past climatic conditions. Recently, Arctic fjords have been recognized as the critical gateway through which oceanic waters can impact on the stability of glaciers. Arctic fjords are also used as idealized locations to study ice-influenced physical, biological and geochemical processes. In all cases a clear understanding of the physical oceanographic environment is required to interpret and predict related impacts and linkages. In this review we consider the characteristic elements of Arctic fjords and the important dynamical processes. We show how the intense seasonality of these regions is reflected in the varying stratification of the fjords. In particular, we show that sea ice has a central role in terms of the fjord salinity which ultimately influences the exchange with oceanic waters. When the fjord is ice free, wind forcing from the intense down-fjord katabatic winds gives rise to rapidly changing cross-fjord gradients, upwelling and strong surface circulations. The stratification and dimensions of Arctic fjords mean that they are often classed as ‘broad’ fjords where rotational effects are important in their circulation. We refer to the link between the physical oceanographic conditions and the related depositional records throughout.

181 citations

Journal ArticleDOI
TL;DR: The idea of the large scale cultivation of macroalgae at sea for subsequent anaerobic digestion to produce biogas as a source of renewable energy is revisited, using a European case study as an example.
Abstract: The economic and environmental viability of dedicated terrestrial energy crops is in doubt. The production of large scale biomass (macroalgae) for biofuels in the marine environment was first tested in the late 1960’s. The culture attempts failed due to the engineering challenges of farming offshore. However the energy conversion via anaerobic digestion was successful as the biochemical composition of macroalgae makes it an ideal feedstock. The technology for the mass production of macroalgae has developed principally in China and Asia over the last 50 years to such a degree that it is now the single largest product of aquaculture. There has also been significant technology transfer and macroalgal cultivation is now well tried and tested in Europe and America. The inherent advantage of production of biofuel feedstock in the marine environment is that it does not compete with food production for land or fresh water. Here we revisit the idea of the large scale cultivation of macroalgae at sea for subsequent anaerobic digestion to produce biogas as a source of renewable energy, using a European case study as an example.

180 citations

Journal ArticleDOI
TL;DR: The use of several benthic indicators, in assessing farm impacts, together with the investigation of dynamics of the studied location, water depth, years of farm activity, and total annual production, must be included when interpreting the response ofbenthic communities to organic enrichment from aquaculture.

178 citations


Authors

Showing all 534 results

NameH-indexPapersCitations
David H. Green9228830311
Ronnie N. Glud6922813615
Harald Schwalbe6648416243
Michael P. Meredith5823413381
Michael T. Burrows5520512902
Gabriele M. König5530710374
Peter Wadhams532198095
Mikhail V. Zubkov501307781
Wolfram Meyer-Klaucke471427560
Gurvan Michel461108416
Paul Tett461506585
Carl J. Carrano462047501
Frithjof C. Küpper451437528
Geraint A. Tarling441716047
Christopher J. S. Bolch411055599
Network Information
Related Institutions (5)
IFREMER
12.3K papers, 468.8K citations

93% related

Alfred Wegener Institute for Polar and Marine Research
10.7K papers, 499.6K citations

93% related

National Marine Fisheries Service
7K papers, 305K citations

91% related

Natural Environment Research Council
4.2K papers, 254.5K citations

90% related

Woods Hole Oceanographic Institution
18.3K papers, 1.2M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20235
202219
2021128
2020151
201985
201896