scispace - formally typeset
Search or ask a question
Institution

Scottish Association for Marine Science

FacilityOban, United Kingdom
About: Scottish Association for Marine Science is a facility organization based out in Oban, United Kingdom. It is known for research contribution in the topics: Sea ice & Benthic zone. The organization has 524 authors who have published 1765 publications receiving 70783 citations. The organization is also known as: SAMS & Scottish Marine Station for Scientific Research.


Papers
More filters
Journal ArticleDOI
TL;DR: This study aimed at determining whether the resultant pattern of species richness with depth is a consequence of local factors in a given region or whether it simply reflects the global pattern of fish species distribution in the oceans.
Abstract: The ichthyofauna of ocean margin regions is characterised by a succession of different species occurring at different depths. This study was aimed at determining whether the resultant pattern of species richness with depth is a consequence of local factors in a given region or whether it simply reflects the global pattern of fish species distribution in the oceans. Along the ocean margin of the temperate NE Atlantic Ocean in the Porcupine Seabight and Abyssal Plain region, 48 degrees-53 degrees N, a total of 108 demersal fish species were identified from 187 trawls at depths from 240 to 4865 m. Fitting of species accumulation curves predicted an asymptote of 120, indicating that the fauna is 90% described. Baited cameras detected 22 scavenging species with a predicted asymptote of 24 species. Scavenging species represented a constant 22.7% (SD 3.5%) of the total species richness throughout the depth range studied. Species richness per trawl varied between a maximum of 16 at 1600 m and 4 on the abyssal plain > 4000 m with no significant influence of sea floor slope (a measure of topographic heterogeneity). Total species richness was 48 at 1600 m and 10 on the abyssal plain. There is a clear transition between slope species above 3000 m and abyssal species below. The depth at which peak species richness occurs (1100-2000 m) coincides with the depth of the permanent thermocline, presence of Mediterranean overflow water (MOW), seasonally strong currents, resuspension of particulate matter, high biomass of benthic filter feeders and pelagic biomass impinging on the slope. We suggest that these factors increase habitat and resource heterogeneity, thus supporting a wider range of fish species. The local pattern of species richness was compared with the global distribution of maximum depths of marine fish species from FishBase. Globally all three Classes of fishes, Agnatha, Chondrichthyes and Osteichthyes, showed a logarithmic decrease in species with depth, with the deepest observed species in each class occurring at 3003 m, 4156 m and 8370 m, respectively. In contrast, the local distribution of species maximum depths is idiosyncratic with a mean of 16.6 species maxima per 500 m at 1000-3000 m depth followed by three species per 500 m at 3500-4000 m and 11 species per 500 m at 5000 m. It is concluded that global patterns of species richness, as a source of recruitment, exert a weak influence on local patterns of species richness. Rather, global species richness is the sum of numerous regional and local patterns, each determined by characteristic environmental conditions.

64 citations

Journal ArticleDOI
TL;DR: This work deployed biomimetic sensors that approximate the thermal characteristics of intertidal mussels at 71 sites worldwide, from 1998-present, which provides an opportunity to link physiological measurements with spatially- and temporally-explicit field observations of body temperature.
Abstract: At a proximal level, the physiological impacts of global climate change on ectothermic organisms are manifest as changes in body temperatures. Especially for plants and animals exposed to direct solar radiation, body temperatures can be substantially different from air temperatures. We deployed biomimetic sensors that approximate the thermal characteristics of intertidal mussels at 71 sites worldwide, from 1998-present. Loggers recorded temperatures at 10–30 min intervals nearly continuously at multiple intertidal elevations. Comparisons against direct measurements of mussel tissue temperature indicated errors of ~2.0–2.5 °C, during daily fluctuations that often exceeded 15°–20 °C. Geographic patterns in thermal stress based on biomimetic logger measurements were generally far more complex than anticipated based only on ‘habitat-level’ measurements of air or sea surface temperature. This unique data set provides an opportunity to link physiological measurements with spatially- and temporally-explicit field observations of body temperature.

64 citations

Journal ArticleDOI
TL;DR: As ocean acidification and warming increase into the future, the downwelling event specific to this site could provide short-term amelioration of corrosive conditions at certain times of the year; however, it could additionally result in enhanced detrimental impacts of warming on CWCs.
Abstract: Cold-water coral (CWC) reefs are recognized as ecologically and biologically significant areas that generate habitats and diversity. The interaction between hydrodynamics and CWCs has been well studied at the Mingulay Reef Complex, a relatively shallow area of reefs found on the continental shelf off Scotland, UK. Within ‘Mingulay Area 01’ a rapid tidal downwelling of surface waters, brought about as an internal wave, is known to supply warmer, phytoplankton-rich waters to corals growing on the northern flank of an east-west trending seabed ridge. This study shows that this tidal downwelling also causes short-term perturbations in the inorganic carbon (CT) and nutrient dynamics through the water column and immediately above the reef. Over a 14 h period, corresponding to one semi-diurnal tidal cycle, seawater pH overlying the reef varied by ca. 0.1 pH unit, while pCO2 shifted by >60 ?atm, a shift equivalent to a ca. 25 year jump into the future, with respect to atmospheric pCO2. During the summer stratified period, these downwelling events result in the reef being washed over with surface water that has higher pH, is warmer, nutrient depleted, but rich in phytoplankton-derived particles compared to the deeper waters in which the corals sit. Empirical observations, together with outputs from the European Regional Shelf Sea Ecosystem Model, demonstrate that the variability that the CWC reefs experience changes through the seasons and into the future. Hence, as ocean acidification and warming increase into the future, the downwelling event specific to this site could provide short-term amelioration of corrosive conditions at certain times of the year; however, it could additionally result in enhanced detrimental impacts of warming on CWCs. Natural variability in the CT and nutrient conditions, as well as local hydrodynamic regimes, must be accounted for in any future predictions concerning the responses of marine ecosystems to climate change.

63 citations

Journal ArticleDOI
TL;DR: In this paper, a theoretical relationship between the change of O2 concentrations and the induced vertical O2 flux is introduced and applied to field measurements showing that changes of 5−10 μM O2 h−1 result in transient EC-fluxes of 6−12 mmol O2 m−2 d−1, which is comparable to the O2 uptake of shelf sediments.
Abstract: [1] Eddy correlation (EC) measurements in the benthic boundary layer (BBL) allow estimating benthic O2 uptake from a point distant to the sediment surface. This noninvasive approach has clear advantages as it does not disturb natural hydrodynamic conditions, integrates the flux over a large foot-print area and allows many repetitive flux measurements. A drawback is, however, that the measured flux in the bottom water is not necessarily equal to the flux across the sediment-water interface. A fundamental assumption of the EC technique is that mean current velocities and mean O2 concentrations in the bottom water are in steady state, which is seldom the case in highly dynamic environments like coastal waters. Therefore, it is of great importance to estimate the error introduced by nonsteady state conditions. We investigated two cases of transient conditions. First, the case of transient O2 concentrations was examined using the theory of shear flow dispersion. A theoretical relationship between the change of O2 concentrations and the induced vertical O2 flux is introduced and applied to field measurements showing that changes of 5–10 μM O2 h−1 result in transient EC-fluxes of 6–12 mmol O2 m−2 d−1, which is comparable to the O2 uptake of shelf sediments. Second, the case of transient velocities was examined with a 2D k-e turbulence model demonstrating that the vertical flux can be biased by 30–100% for several hours during changing current velocities from 2 to 10 cm s−1. Results are compared to field measurements and possible ways to analyze and correct EC-flux estimates are discussed.

63 citations

Journal ArticleDOI
TL;DR: Activity of juvenile cod was nonlinearly affected by turbidity and was lower at intermediate turbidity, regardless of the presence of prey odour, and both longer prey-search times and higher activity indicate that increased energetic costs are probable at high turbidity.
Abstract: attenuation m K1 ) had little effect on the foraging rate of juvenile cod. Although this was attributed to cod using chemoreception in conjunction with vision to locate prey, foraging rates may also be maintained by increased activity. Higher activity, however, is energetically costly and may offset benefits from increased foraging return. We examined the effects of turbidity on prey searching and spontaneous activity of juvenile cod in the laboratory, by measuring activity with and without prey cues. Activity of juvenile cod was nonlinearly affected by turbidity and was lower at intermediate turbidity, regardless of the presence of prey odour. Activity increased over time when prey odour was present and decreased when absent, but the effects of prey odour were similar across all turbidity levels. Position in the tank was unaffected by turbidity or prey odour. Reduced activity at intermediate turbidities is likely to offset longer preysearch times. At high turbidity (greater than 17 m K1 ), both longer prey-search times and higher

63 citations


Authors

Showing all 534 results

NameH-indexPapersCitations
David H. Green9228830311
Ronnie N. Glud6922813615
Harald Schwalbe6648416243
Michael P. Meredith5823413381
Michael T. Burrows5520512902
Gabriele M. König5530710374
Peter Wadhams532198095
Mikhail V. Zubkov501307781
Wolfram Meyer-Klaucke471427560
Gurvan Michel461108416
Paul Tett461506585
Carl J. Carrano462047501
Frithjof C. Küpper451437528
Geraint A. Tarling441716047
Christopher J. S. Bolch411055599
Network Information
Related Institutions (5)
IFREMER
12.3K papers, 468.8K citations

93% related

Alfred Wegener Institute for Polar and Marine Research
10.7K papers, 499.6K citations

93% related

National Marine Fisheries Service
7K papers, 305K citations

91% related

Natural Environment Research Council
4.2K papers, 254.5K citations

90% related

Woods Hole Oceanographic Institution
18.3K papers, 1.2M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20235
202219
2021128
2020151
201985
201896