scispace - formally typeset
Search or ask a question
Institution

Stanford University

EducationStanford, California, United States
About: Stanford University is a education organization based out in Stanford, California, United States. It is known for research contribution in the topics: Population & Transplantation. The organization has 125751 authors who have published 320347 publications receiving 21892059 citations. The organization is also known as: Leland Stanford Junior University & University of Stanford.
Topics: Population, Transplantation, Medicine, Cancer, Gene


Papers
More filters
Journal ArticleDOI
TL;DR: This work describes the OBO Foundry initiative and provides guidelines for those who might wish to become involved and describes an expanding family of ontologies designed to be interoperable and logically well formed and to incorporate accurate representations of biological reality.
Abstract: The value of any kind of data is greatly enhanced when it exists in a form that allows it to be integrated with other data. One approach to integration is through the annotation of multiple bodies of data using common controlled vocabularies or 'ontologies'. Unfortunately, the very success of this approach has led to a proliferation of ontologies, which itself creates obstacles to integration. The Open Biomedical Ontologies (OBO) consortium is pursuing a strategy to overcome this problem. Existing OBO ontologies, including the Gene Ontology, are undergoing coordinated reform, and new ontologies are being created on the basis of an evolving set of shared principles governing ontology development. The result is an expanding family of ontologies designed to be interoperable and logically well formed and to incorporate accurate representations of biological reality. We describe this OBO Foundry initiative and provide guidelines for those who might wish to become involved.

2,492 citations

Journal ArticleDOI
TL;DR: The authors discusses the similarities between the two theories, develops an argument for why a fusion of the two would enable institutional theory to significantly advance, develops a model of institutionalization as a structuration process, and proposes methodological guidelines for investigating the process empirically.
Abstract: Institutional theory and structuration theory both contend that institutions and actions are inextricably linked and that institutionalization is best understood as a dynamic, ongoing process. Institutionalists, however, have pursued an empirical agenda that has largely ignored how institutions are created, altered, and reproduced, in part, because their models of institutionalization as a pro cess are underdeveloped. Structuration theory, on the other hand, largely remains a process theory of such abstraction that it has generated few empirical studies. This paper discusses the similarities between the two theories, develops an argument for why a fusion of the two would enable institutional theory to significantly advance, develops a model of institutionalization as a structuration process, and proposes methodological guidelines for investigating the process empirically.

2,485 citations

Journal ArticleDOI
02 Sep 2005-Science
TL;DR: It is shown that the sequestration of miR-122 in liver cells results in marked loss of autonomously replicating hepatitis C viral RNAs, suggesting that miR -122 may present a target for antiviral intervention.
Abstract: MicroRNAs are small RNA molecules that regulate messenger RNA (mRNA) expression. MicroRNA 122 (miR-122) is specifically expressed and highly abundant in the human liver. We show that the sequestration of miR-122 in liver cells results in marked loss of autonomously replicating hepatitis C viral RNAs. A genetic interaction between miR-122 and the 5' noncoding region of the viral genome was revealed by mutational analyses of the predicted microRNA binding site and ectopic expression of miR-122 molecules containing compensatory mutations. Studies with replication-defective RNAs suggested that miR-122 did not detectably affect mRNA translation or RNA stability. Therefore, miR-122 is likely to facilitate replication of the viral RNA, suggesting that miR-122 may present a target for antiviral intervention.

2,484 citations

Journal ArticleDOI
TL;DR: A wealth of recent research on negative emotions in animals and humans is examined, and it is concluded that, contrary to the traditional dichotomy, both subdivisions make key contributions to emotional processing.

2,484 citations

Journal ArticleDOI
TL;DR: An overview of the extensive results on the Shannon capacity of single-user and multiuser multiple-input multiple-output (MIMO) channels is provided and it is shown that the capacity region of the MIMO multiple access and the largest known achievable rate region (called the dirty-paper region) for the M IMO broadcast channel are intimately related via a duality transformation.
Abstract: We provide an overview of the extensive results on the Shannon capacity of single-user and multiuser multiple-input multiple-output (MIMO) channels. Although enormous capacity gains have been predicted for such channels, these predictions are based on somewhat unrealistic assumptions about the underlying time-varying channel model and how well it can be tracked at the receiver, as well as at the transmitter. More realistic assumptions can dramatically impact the potential capacity gains of MIMO techniques. For time-varying MIMO channels there are multiple Shannon theoretic capacity definitions and, for each definition, different correlation models and channel information assumptions that we consider. We first provide a comprehensive summary of ergodic and capacity versus outage results for single-user MIMO channels. These results indicate that the capacity gain obtained from multiple antennas heavily depends on the available channel information at either the receiver or transmitter, the channel signal-to-noise ratio, and the correlation between the channel gains on each antenna element. We then focus attention on the capacity region of the multiple-access channels (MACs) and the largest known achievable rate region for the broadcast channel. In contrast to single-user MIMO channels, capacity results for these multiuser MIMO channels are quite difficult to obtain, even for constant channels. We summarize results for the MIMO broadcast and MAC for channels that are either constant or fading with perfect instantaneous knowledge of the antenna gains at both transmitter(s) and receiver(s). We show that the capacity region of the MIMO multiple access and the largest known achievable rate region (called the dirty-paper region) for the MIMO broadcast channel are intimately related via a duality transformation. This transformation facilitates finding the transmission strategies that achieve a point on the boundary of the MIMO MAC capacity region in terms of the transmission strategies of the MIMO broadcast dirty-paper region and vice-versa. Finally, we discuss capacity results for multicell MIMO channels with base station cooperation. The base stations then act as a spatially diverse antenna array and transmission strategies that exploit this structure exhibit significant capacity gains. This section also provides a brief discussion of system level issues associated with MIMO cellular. Open problems in this field abound and are discussed throughout the paper.

2,480 citations


Authors

Showing all 127468 results

NameH-indexPapersCitations
Eric S. Lander301826525976
George M. Whitesides2401739269833
Yi Cui2201015199725
Yi Chen2174342293080
David Miller2032573204840
David Baltimore203876162955
Edward Witten202602204199
Irving L. Weissman2011141172504
Hongjie Dai197570182579
Robert M. Califf1961561167961
Frank E. Speizer193636135891
Thomas C. Südhof191653118007
Gad Getz189520247560
Mark Hallett1861170123741
John P. A. Ioannidis1851311193612
Network Information
Related Institutions (5)
Columbia University
224K papers, 12.8M citations

97% related

University of Washington
305.5K papers, 17.7M citations

97% related

University of Pennsylvania
257.6K papers, 14.1M citations

96% related

Harvard University
530.3K papers, 38.1M citations

96% related

University of Michigan
342.3K papers, 17.6M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023504
20222,786
202117,867
202018,236
201916,190
201814,684