scispace - formally typeset
Search or ask a question
Institution

Stanford University

EducationStanford, California, United States
About: Stanford University is a education organization based out in Stanford, California, United States. It is known for research contribution in the topics: Population & Transplantation. The organization has 125751 authors who have published 320347 publications receiving 21892059 citations. The organization is also known as: Leland Stanford Junior University & University of Stanford.
Topics: Population, Transplantation, Medicine, Cancer, Gene


Papers
More filters
Journal ArticleDOI
TL;DR: Criteria for the classification of giant cell (temporal) arteritis were developed by comparing 214 patients who had this disease with 593 patients with other forms of vasculitis, and 2 other variables were included: scalp tenderness and claudication of the jaw or tongue or on deglutition.
Abstract: Criteria for the classification of giant cell (temporal) arteritis were developed by comparing 214 patients who had this disease with 593 patients with other forms of vasculitis. For the traditional format classification, 5 criteria were selected: age greater than or equal to 50 years at disease onset, new onset of localized headache, temporal artery tenderness or decreased temporal artery pulse, elevated erythrocyte sedimentation rate (Westergren) greater than or equal to 50 mm/hour, and biopsy sample including an artery, showing necrotizing arteritis, characterized by a predominance of mononuclear cell infiltrates or a granulomatous process with multinucleated giant cells. The presence of 3 or more of these 5 criteria was associated with a sensitivity of 93.5% and a specificity of 91.2%. A classification tree was also constructed using 6 criteria. These criteria were the same as for the traditional format, except that elevated erythrocyte sedimentation rate was excluded, and 2 other variables were included: scalp tenderness and claudication of the jaw or tongue or on deglutition. The classification tree was associated with a sensitivity of 95.3% and specificity of 90.7%.

2,204 citations

Journal ArticleDOI
TL;DR: This paper will discuss how geometry and topology can be applied to make useful contributions to the analysis of various kinds of data, particularly high throughput data from microarray or other sources.
Abstract: An important feature of modern science and engineering is that data of various kinds is being produced at an unprecedented rate This is so in part because of new experimental methods, and in part because of the increase in the availability of high powered computing technology It is also clear that the nature of the data we are obtaining is significantly different For example, it is now often the case that we are given data in the form of very long vectors, where all but a few of the coordinates turn out to be irrelevant to the questions of interest, and further that we don’t necessarily know which coordinates are the interesting ones A related fact is that the data is often very high-dimensional, which severely restricts our ability to visualize it The data obtained is also often much noisier than in the past and has more missing information (missing data) This is particularly so in the case of biological data, particularly high throughput data from microarray or other sources Our ability to analyze this data, both in terms of quantity and the nature of the data, is clearly not keeping pace with the data being produced In this paper, we will discuss how geometry and topology can be applied to make useful contributions to the analysis of various kinds of data Geometry and topology are very natural tools to apply in this direction, since geometry can be regarded as the study of distance functions, and what one often works with are distance functions on large finite sets of data The mathematical formalism which has been developed for incorporating geometric and topological techniques deals with point clouds, ie finite sets of points equipped with a distance function It then adapts tools from the various branches of geometry to the study of point clouds The point clouds are intended to be thought of as finite samples taken from a geometric object, perhaps with noise Here are some of the key points which come up when applying these geometric methods to data analysis • Qualitative information is needed: One important goal of data analysis is to allow the user to obtain knowledge about the data, ie to understand how it is organized on a large scale For example, if we imagine that we are looking at a data set constructed somehow from diabetes patients, it would be important to develop the understanding that there are two types of the disease, namely the juvenile and adult onset forms Once that is established, one of course wants to develop quantitative methods for distinguishing them, but the first insight about the distinct forms of the disease is key

2,203 citations

Journal ArticleDOI
TL;DR: Catheter-based renal denervation can safely be used to substantially reduce blood pressure in treatment-resistant hypertensive patients and should be continued, according to the authors.

2,200 citations

Journal ArticleDOI
TL;DR: A modified and improved SCARE checklist is presented, after a Delphi consensus exercise was completed to update the SCARE guidelines.

2,195 citations

Journal ArticleDOI
TL;DR: Using cDNA microarrays to explore the variation in expression of approximately 8,000 unique genes among the 60 cell lines used in the National Cancer Institute's screen for anti-cancer drugs provided a novel molecular characterization of this important group of human cell lines and their relationships to tumours in vivo.
Abstract: We used cDNA microarrays to explore the variation in expression of approximately 8,000 unique genes among the 60 cell lines used in the National Cancer Institute's screen for anti-cancer drugs. Classification of the cell lines based solely on the observed patterns of gene expression revealed a correspondence to the ostensible origins of the tumours from which the cell lines were derived. The consistent relationship between the gene expression patterns and the tissue of origin allowed us to recognize outliers whose previous classification appeared incorrect. Specific features of the gene expression patterns appeared to be related to physiological properties of the cell lines, such as their doubling time in culture, drug metabolism or the interferon response. Comparison of gene expression patterns in the cell lines to those observed in normal breast tissue or in breast tumour specimens revealed features of the expression patterns in the tumours that had recognizable counterparts in specific cell lines, reflecting the tumour, stromal and inflammatory components of the tumour tissue. These results provided a novel molecular characterization of this important group of human cell lines and their relationships to tumours in vivo.

2,192 citations


Authors

Showing all 127468 results

NameH-indexPapersCitations
Eric S. Lander301826525976
George M. Whitesides2401739269833
Yi Cui2201015199725
Yi Chen2174342293080
David Miller2032573204840
David Baltimore203876162955
Edward Witten202602204199
Irving L. Weissman2011141172504
Hongjie Dai197570182579
Robert M. Califf1961561167961
Frank E. Speizer193636135891
Thomas C. Südhof191653118007
Gad Getz189520247560
Mark Hallett1861170123741
John P. A. Ioannidis1851311193612
Network Information
Related Institutions (5)
Columbia University
224K papers, 12.8M citations

97% related

University of Washington
305.5K papers, 17.7M citations

97% related

University of Pennsylvania
257.6K papers, 14.1M citations

96% related

Harvard University
530.3K papers, 38.1M citations

96% related

University of Michigan
342.3K papers, 17.6M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023504
20222,786
202117,867
202018,236
201916,190
201814,684