scispace - formally typeset
Search or ask a question

Showing papers in "Nature Genetics in 2000"


Journal ArticleDOI
TL;DR: The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing.
Abstract: Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.

35,225 citations


Journal ArticleDOI
TL;DR: A role is established for Oct-3/4 as a master regulator of pluripotency that controls lineage commitment and the sophistication of critical transcriptional regulators is illustrated and the consequent importance of quantitative analyses are illustrated.
Abstract: Cell fate during development is defined by transcription factors that act as molecular switches to activate or repress specific gene expression programmes. The POU transcription factor Oct-3/4 (encoded by Pou5f1) is a candidate regulator in pluripotent and germline cells and is essential for the initial formation of a pluripotent founder cell population in the mammalian embryo. Here we use conditional expression and repression in embryonic stem (ES) cells to determine requirements for Oct-3/4 in the maintenance of developmental potency. Although transcriptional determination has usually been considered as a binary on-off control system, we found that the precise level of Oct-3/4 governs three distinct fates of ES cells. A less than twofold increase in expression causes differentiation into primitive endoderm and mesoderm. In contrast, repression of Oct-3/4 induces loss of pluripotency and dedifferentiation to trophectoderm. Thus a critical amount of Oct-3/4 is required to sustain stem-cell self-renewal, and up- or downregulation induce divergent developmental programmes. Our findings establish a role for Oct-3/4 as a master regulator of pluripotency that controls lineage commitment and illustrate the sophistication of critical transcriptional regulators and the consequent importance of quantitative analyses.

3,745 citations


Journal ArticleDOI
TL;DR: It is shown here that antisense, morpholino-modified oligonucleotides (morpholinos) are effective and specific translational inhibitors in zebrafish, and conserved vertebrate processes and diseases are now amenable to a systematic, in vivo, reverse-genetic paradigm using zebra fish embryos.
Abstract: The sequencing of the zebrafish genome should be completed by the end of 2002. Direct assignment of function on the basis of this information would be facilitated by the development of a rapid, targeted 'knockdown' technology in this model vertebrate. We show here that antisense, morpholino-modified oligonucleotides (morpholinos) are effective and specific translational inhibitors in zebrafish. We generated phenocopies of mutations of the genes no tail (ref. 2), chordin (ref. 3), one-eyed-pinhead (ref. 4), nacre (ref. 5) and sparse (ref. 6), removing gene function from maternal through post-segmentation and organogenesis developmental stages. We blocked expression from a ubiquitous green fluorescent protein (GFP) transgene, showing that, unlike tissue-restricted limitations found with RNA-based interference in the nematode, all zebrafish cells readily respond to this technique. We also developed also morpholino-based zebrafish models of human disease. Morpholinos targeted to the uroporphyrinogen decarboxylase gene result in embryos with hepatoerythropoietic porphyria. We also used morpholinos for the determination of new gene functions. We showed that embryos with reduced sonic hedgehog (ref. 9) signalling and reduced tiggy-winkle hedgehog (ref. 10) function exhibit partial cyclopia and other specific midline abnormalities, providing a zebrafish genetic model for the common human disorder holoprosencephaly. Conserved vertebrate processes and diseases are now amenable to a systematic, in vivo, reverse-genetic paradigm using zebrafish embryos.

2,582 citations


Journal ArticleDOI
TL;DR: Using cDNA microarrays to explore the variation in expression of approximately 8,000 unique genes among the 60 cell lines used in the National Cancer Institute's screen for anti-cancer drugs provided a novel molecular characterization of this important group of human cell lines and their relationships to tumours in vivo.
Abstract: We used cDNA microarrays to explore the variation in expression of approximately 8,000 unique genes among the 60 cell lines used in the National Cancer Institute's screen for anti-cancer drugs. Classification of the cell lines based solely on the observed patterns of gene expression revealed a correspondence to the ostensible origins of the tumours from which the cell lines were derived. The consistent relationship between the gene expression patterns and the tissue of origin allowed us to recognize outliers whose previous classification appeared incorrect. Specific features of the gene expression patterns appeared to be related to physiological properties of the cell lines, such as their doubling time in culture, drug metabolism or the interferon response. Comparison of gene expression patterns in the cell lines to those observed in normal breast tissue or in breast tumour specimens revealed features of the expression patterns in the tumours that had recognizable counterparts in specific cell lines, reflecting the tumour, stromal and inflammatory components of the tumour tissue. These results provided a novel molecular characterization of this important group of human cell lines and their relationships to tumours in vivo.

2,192 citations


Journal ArticleDOI
TL;DR: These findings provide the first genetic evidence that common mutations in TLR4 are associated with differences in LPS responsiveness in humans, and demonstrate that gene-sequence changes can alter the ability of the host to respond to environmental stress.
Abstract: There is much variability between individuals in the response to inhaled toxins, but it is not known why certain people develop disease when challenged with environmental agents and others remain healthy. To address this, we investigated whether TLR4 (encoding the toll-like receptor-4), which has been shown to affect lipopolysaccharide (LPS) responsiveness in mice 1,2 , underlies the variability in airway responsiveness to inhaled LPS in humans 3 . Here we show that common, co-segregating missense mutations (Asp299Gly and Thr399Ile) affecting the extracellular domain of the TLR4 receptor are associated with a blunted response to inhaled LPS in humans. Transfection of THP-1 cells demonstrates that the Asp299Gly mutation (but not the Thr399Ile mutation) interrupts TLR4-mediated LPS signalling. Moreover, the wild-type allele of TLR4 rescues the LPS hyporesponsive phenotype in either primary airway epithelial cells or alveolar macrophages obtained from individuals with the TLR4 mutations. Our findings provide the first genetic evidence that common mutations in TLR4 are associated with differences in LPS responsiveness in humans, and demonstrate that gene-sequence changes can alter the ability of the host to respond to environmental stress. We investigated the genetic basis for the physiologic response to inhaled endotoxin or LPS for several reasons. First, endotoxin is associated with the development and progression of asthma and other forms of airway disease. In the domestic setting, the concentration of endotoxin is associated with the clinical severity of asthma 4 , and, among exposed workers, endotoxin is the most significant component of the bioaerosol that is associated with the development 5 and progression 6 of airway disease. Endotoxin may also have a role in the pathophysiological consequences of air pollution 7 . Second, the ability of the host to respond to endotoxin is highly variable. Differences between individuals have been reported in the release and synthesis of cytokines by human monocytes stimulated with LPS in vitro 8 , and a patient with recurrent bacterial infections has been reported to be refractory to the in vivo and in vitro effects of LPS (ref. 9). We have recently found that normal, healthy, non-asthmatic subjects demonstrate a reproducible airway response to an incremental LPS inhalation challenge test; some subjects developed airflow obstruction when challenged with low concentrations of LPS and others were unaffected by high concentrations of inhaled LPS (ref. 3). Third, the

2,014 citations


Journal ArticleDOI
TL;DR: The findings indicate that accumulation of proteins that have yet to be identified causes a selective neural cell death without formation of Lewy bodies, and should enhance the exploration of the molecular mechanisms of neurodegeneration in Parkinson disease as well as in other Neurodegenerative diseases that are characterized by involvement of abnormal protein ubiquitination.
Abstract: Autosomal recessive juvenile parkinsonism (AR-JP), one of the most common familial forms of Parkinson disease, is characterized by selective dopaminergic neural cell death and the absence of the Lewy body, a cytoplasmic inclusion body consisting of aggregates of abnormally accumulated proteins. We previously cloned PARK2, mutations of which cause AR-JP (ref. 2), but the function of the gene product, parkin, remains unknown. We report here that parkin is involved in protein degradation as a ubiquitin-protein ligase collaborating with the ubiquitin-conjugating enzyme UbcH7, and that mutant parkins from AR-JP patients show loss of the ubiquitin-protein ligase activity. Our findings indicate that accumulation of proteins that have yet to be identified causes a selective neural cell death without formation of Lewy bodies. Our findings should enhance the exploration of the molecular mechanisms of neurodegeneration in Parkinson disease as well as in other neurodegenerative diseases that are characterized by involvement of abnormal protein ubiquitination, including Alzheimer disease, other tauopathies, CAG triplet repeat disorders and amyotrophic lateral sclerosis.

1,998 citations


PatentDOI
TL;DR: The nucleic acids, primers and probes are used in applications such as phenotype correlations, forensics, paternity testing, medicine and genetic analysis as mentioned in this paper, where the nucleic acid segments from the coding region of a gene, including polymorphic sites are provided.
Abstract: The invention provides nucleic acid segments of the human genome, particularly nucleic acid segments from the coding region of a gene, including polymorphic sites. Allele-specific primers and probes hybridizing to regions flanking or containing these sites are also provided. The nucleic acids, primers and probes are used in applications such as phenotype correlations, forensics, paternity testing, medicine and genetic analysis.

1,742 citations


Journal ArticleDOI
TL;DR: By analysing over 3,000 individuals, this work found a modest but significant increase in diabetes risk associated with the more common proline allele, which translates into a large population attributable risk—influencing as much as 25% of type 2 diabetes in the general population.
Abstract: Genetic association studies are viewed as problematic and plagued by irreproducibility. Many associations have been reported for type 2 diabetes, but none have been confirmed in multiple samples and with comprehensive controls. We evaluated 16 published genetic associations to type 2 diabetes and related sub-phenotypes using a family-based design to control for population stratification, and replication samples to increase power. We were able to confirm only one association, that of the common Pro12Ala polymorphism in peroxisome proliferator-activated receptor-gamma(PPARgamma) with type 2 diabetes. By analysing over 3,000 individuals, we found a modest (1.25-fold) but significant (P=0.002) increase in diabetes risk associated with the more common proline allele (85% frequency). Moreover, our results resolve a controversy about common variation in PPARgamma. An initial study found a threefold effect, but four of five subsequent publications failed to confirm the association. All six studies are consistent with the odds ratio we describe. The data implicate inherited variation in PPARgamma in the pathogenesis of type 2 diabetes. Because the risk allele occurs at such high frequency, its modest effect translates into a large population attributable risk-influencing as much as 25% of type 2 diabetes in the general population.

1,698 citations


Journal ArticleDOI
TL;DR: Gene-drug relationships for the clinical agents 5-fluorouracil and L-asparaginase exemplify how variations in the transcript levels of particular genes relate to mechanisms of drug sensitivity and resistance.
Abstract: We used cDNA microarrays to assess gene expression profiles in 60 human cancer cell lines used in a drug discovery screen by the National Cancer Institute. Using these data, we linked bioinformatics and chemoinformatics by correlating gene expression and drug activity patterns in the NCI60 lines. Clustering the cell lines on the basis of gene expression yielded relationships very different from those obtained by clustering the cell lines on the basis of their response to drugs. Gene-drug relationships for the clinical agents 5-fluorouracil and L-asparaginase exemplify how variations in the transcript levels of particular genes relate to mechanisms of drug sensitivity and resistance. This is the first study to integrate large databases on gene expression and molecular pharmacology.

1,457 citations


Journal ArticleDOI
TL;DR: The positional cloning of a gene located in the NIDDM1 region that shows association with type 2 diabetes in Mexican Americans and a Northern European population from the Botnia region of Finland is described, suggesting a novel pathway that may contribute to the development of type 1 diabetes.
Abstract: Type 2 or non-insulin-dependent diabetes mellitus (NIDDM) is the most common form of diabetes worldwide, affecting approximately 4% of the world's adult population. It is multifactorial in origin with both genetic and environmental factors contributing to its development. A genome-wide screen for type 2 diabetes genes carried out in Mexican Americans localized a susceptibility gene, designated NIDDM1, to chromosome 2. Here we describe the positional cloning of a gene located in the NIDDM1 region that shows association with type 2 diabetes in Mexican Americans and a Northern European population from the Botnia region of Finland. This putative diabetes-susceptibility gene encodes a ubiquitously expressed member of the calpain-like cysteine protease family, calpain-10 (CAPN10). This finding suggests a novel pathway that may contribute to the development of type 2 diabetes.

1,443 citations


Journal ArticleDOI
TL;DR: A positional cloning approach was used to identify the ADHR gene which included the annotation of 37 genes within 4 Mb of genomic sequence, and missense mutations in a gene encoding a new member of the fibroblast growth factor (FGF) family, FGF23 were identified.
Abstract: Proper serum phosphate concentrations are maintained by a complex and poorly understood process. Identification of genes responsible for inherited disorders involving disturbances in phosphate homeostasis may provide insight into the pathways that regulate phosphate balance. Several hereditary disorders of isolated phosphate wasting have been described, including X-linked hypophosphataemic rickets1 (XLH), hypophosphataemic bone disease2 (HBD), hereditary hypophosphataemic rickets with hypercalciuria3 (HHRH) and autosomal dominant hypophosphataemic rickets4,5 (ADHR). Inactivating mutations of the gene PHEX, encoding a member of the neutral endopeptidase family of proteins, are responsible for XLH (refs 6,7). ADHR (MIM 193100) is characterized by low serum phosphorus concentrations, rickets, osteomalacia, lower extremity deformities, short stature, bone pain and dental abscesses4,5. Here we describe a positional cloning approach used to identify the ADHR gene which included the annotation of 37 genes within 4 Mb of genomic sequence. We identified missense mutations in a gene encoding a new member of the fibroblast growth factor (FGF) family, FGF23. These mutations in patients with ADHR represent the first mutations found in a human FGF gene.

Journal ArticleDOI
TL;DR: It is shown that FPPH is caused by mutations in BMPR2, encoding a TGF-β type II receptor (BMPR-II), which transduce signals by binding to heteromeric complexes of type I and II receptors, which activates serine/threonine kinases, leading to transcriptional regulation by phosphorylated Smads.
Abstract: Primary pulmonary hypertension (PPH), characterized by obstruction of pre-capillary pulmonary arteries, leads to sustained elevation of pulmonary arterial pressure (mean >25 mm Hg at rest or >30 mm Hg during exercise). The aetiology is unknown, but the histological features reveal proliferation of endothelial and smooth muscle cells with vascular remodelling (Fig. 1). More than one affected relative has been identified in at least 6% of cases (familial PPH, MIM 178600). Familial PPH (FPPH) segregates as an autosomal dominant disorder with reduced penetrance and has been mapped to a locus designated PPH1 on 2q33, with no evidence of heterogeneity. We now show that FPPH is caused by mutations in BMPR2, encoding a TGF-beta type II receptor (BMPR-II). Members of the TGF-beta superfamily transduce signals by binding to heteromeric complexes of type I and II receptors, which activates serine/threonine kinases, leading to transcriptional regulation by phosphorylated Smads. By comparison with in vitro studies, identified defects of BMPR-II in FPPH are predicted to disrupt ligand binding, kinase activity and heteromeric dimer formation. Our data demonstrate the molecular basis of FPPH and underscore the importance in vivo of the TGF-beta signalling pathway in the maintenance of blood vessel integrity.

Journal ArticleDOI
TL;DR: A nuclear gene, OPA1, is described here a nuclear gene that maps within the candidate region and encodes a dynamin-related protein localized to mitochondria, demonstrating a role for mitochondria in retinal ganglion cell pathophysiology.
Abstract: Optic atrophy type 1 (OPA1, MIM 165500) is a dominantly inherited optic neuropathy occurring in 1 in 50,000 individuals that features progressive loss in visual acuity leading, in many cases, to legal blindness. Phenotypic variations and loss of retinal ganglion cells, as found in Leber hereditary optic neuropathy (LHON), have suggested possible mitochondrial impairment. The OPA1 gene has been localized to 3q28-q29 (refs 13-19). We describe here a nuclear gene, OPA1, that maps within the candidate region and encodes a dynamin-related protein localized to mitochondria. We found four different OPA1 mutations, including frameshift and missense mutations, to segregate with the disease, demonstrating a role for mitochondria in retinal ganglion cell pathophysiology.

Journal ArticleDOI
TL;DR: This report reports a global analysis of the methylation status of 1,184 unselected CpG islands in each of 98 primary human tumours using restriction landmark genomic scanning (RLGS), and estimates that an average of 600 C pG islands were aberrantly methylated in the tumours, including early stage tumours.
Abstract: CpG islands frequently contain gene promoters or exons and are usually unmethylated in normal cells. Methylation of CpG islands is associated with delayed replication, condensed chromatin and inhibition of transcription initiation. The investigation of aberrant CpG-island methylation in human cancer has primarily taken a candidate gene approach, and has focused on less than 15 of the estimated 45,000 CpG islands in the genome. Here we report a global analysis of the methylation status of 1,184 unselected CpG islands in each of 98 primary human tumours using restriction landmark genomic scanning (RLGS). We estimate that an average of 600 CpG islands (range of 0 to 4,500) of the 45,000 in the genome were aberrantly methylated in the tumours, including early stage tumours. We identified patterns of CpG-island methylation that were shared within each tumour type, together with patterns and targets that displayed distinct tumour-type specificity. The expression of many of these genes was reactivated by experimental demethylation in cultured tumour cells. Thus, the methylation of particular subsets of CpG islands may have consequences for specific tumour types.

Journal ArticleDOI
TL;DR: It is found that ten different NPHS2 mutations, comprising nonsense, frameshift and missense mutations, to segregate with the disease, demonstrating a crucial role for podocin in the function of the glomerular filtration barrier.
Abstract: Familial idiopathic nephrotic syndromes represent a heterogeneous group of kidney disorders, and include autosomal recessive steroid-resistant nephrotic syndrome, which is characterized by early childhood onset of proteinuria, rapid progression to end-stage renal disease and focal segmental glomerulosclerosis. A causative gene for this disease, NPHS2, was mapped to 1q25-31 and we report here its identification by positional cloning. NPHS2 is almost exclusively expressed in the podocytes of fetal and mature kidney glomeruli, and encodes a new integral membrane protein, podocin, belonging to the stomatin protein family. We found ten different NPHS2 mutations, comprising nonsense, frameshift and missense mutations, to segregate with the disease, demonstrating a crucial role for podocin in the function of the glomerular filtration barrier.

Journal ArticleDOI
TL;DR: The phenotype of mice expressing P301L mutant tau mimics features of human tauopathies and provides a model for investigating the pathogenesis of diseases with NFT.
Abstract: Neurofibrillary tangles (NFT) composed of the microtubule-associated protein tau are prominent in Alzheimer disease (AD), Pick disease, progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). Mutations in the gene (Mtapt) encoding tau protein cause frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), thereby proving that tau dysfunction can directly result in neurodegeneration. Expression of human tau containing the most common FTDP-17 mutation (P301L) results in motor and behavioural deficits in transgenic mice, with age- and gene-dose-dependent development of NFT. This phenotype occurred as early as 6.5 months in hemizygous and 4.5 months in homozygous animals. NFT and Pick-body-like neuronal lesions occurred in the amygdala, septal nuclei, pre-optic nuclei, hypothalamus, midbrain, pons, medulla, deep cerebellar nuclei and spinal cord, with tau-immunoreactive pre-tangles in the cortex, hippocampus and basal ganglia. Areas with the most NFT had reactive gliosis. Spinal cord had axonal spheroids, anterior horn cell loss and axonal degeneration in anterior spinal roots. We also saw peripheral neuropathy and skeletal muscle with neurogenic atrophy. Brain and spinal cord contained insoluble tau that co-migrated with insoluble tau from AD and FTDP-17 brains. The phenotype of mice expressing P301L mutant tau mimics features of human tauopathies and provides a model for investigating the pathogenesis of diseases with NFT.

Journal ArticleDOI
TL;DR: The presence of consensus signal peptide sequences suggests that the product of the gene OPA1 is targeted to mitochondria and may exert its function in mitochondrial biogenesis and stabilization of mitochondrial membrane integrity.
Abstract: Autosomal dominant optic atrophy (ADOA) is the most prevalent hereditary optic neuropathy resulting in progressive loss of visual acuity, centrocoecal scotoma and bilateral temporal atrophy of the optic nerve with an onset within the first two decades of life. The predominant locus for this disorder (OPA1; MIM 165500) has been mapped to a 1.4-cM interval on chromosome 3q28-q29 flanked by markers D3S3669 and D3S3562 (ref. 3). We established a PAC contig covering the entire OPA1 candidate region of approximately 1 Mb and a sequence skimming approach allowed us to identify a gene encoding a polypeptide of 960 amino acids with homology to dynamin-related GTPases. The gene comprises 28 coding exons and spans more than 40 kb of genomic sequence. Upon sequence analysis, we identified mutations in seven independent families with ADOA. The mutations include missense and nonsense alterations, deletions and insertions, which all segregate with the disease in these families. Because most mutations probably represent null alleles, dominant inheritance of the disease may result from haploinsufficiency of OPA1. OPA1 is widely expressed and is most abundant in the retina. The presence of consensus signal peptide sequences suggests that the product of the gene OPA1 is targeted to mitochondria and may exert its function in mitochondrial biogenesis and stabilization of mitochondrial membrane integrity.


Journal ArticleDOI
TL;DR: It is shown that mice deficient in Hes1 (encoding Hes-1) display severe pancreatic hypoplasia caused by depletion of pancreatic epithelial precursors due to accelerated differentiation of post-mitotic endocrine cells expressing glucagon, and upregulation of several bHLH components is associated with precocious and excessive differentiation of multiple endocrine cell types in the developing stomach and gut, showing that Hes- 1 operates as a general negative regulator of endodermal endocrine differentiation.
Abstract: Development of endocrine cells in the endoderm involves Atonal and Achaete/Scute-related basic helix-loop-helix (bHLH) proteins. These proteins also serve as neuronal determination and differentiation factors, and are antagonized by the Notch pathway partly acting through Hairy and Enhancer-of-split (HES)-type proteins. Here we show that mice deficient in Hes1 (encoding Hes-1) display severe pancreatic hypoplasia caused by depletion of pancreatic epithelial precursors due to accelerated differentiation of post-mitotic endocrine cells expressing glucagon. Moreover, upregulation of several bHLH components is associated with precocious and excessive differentiation of multiple endocrine cell types in the developing stomach and gut, showing that Hes-1 operates as a general negative regulator of endodermal endocrine differentiation.

Journal ArticleDOI
TL;DR: Evidence is presented that mutations in the gene encoding α-actinin-4 (ACTN4) are the cause of disease in three families with an autosomal dominant form of FSGS, and Regulation of the actin cytoskeleton of glomerular podocytes may be altered in this group of patients.
Abstract: Focal and segmental glomerulosclerosis (FSGS) is a common, non-specific renal lesion Although it is often secondary to other disorders, including HIV infection, obesity, hypertension and diabetes, FSGS also appears as an isolated, idiopathic condition FSGS is characterized by increased urinary protein excretion and decreasing kidney function Often, renal insufficiency in affected patients progresses to end-stage renal failure, a highly morbid state requiring either dialysis therapy or kidney transplantation Here we present evidence implicating mutations in the gene encoding alpha-actinin-4 (ACTN4; ref 2), an actin-filament crosslinking protein, as the cause of disease in three families with an autosomal dominant form of FSGS In vitro, mutant alpha-actinin-4 binds filamentous actin (F-actin) more strongly than does wild-type alpha-actinin-4 Regulation of the actin cytoskeleton of glomerular podocytes may be altered in this group of patients Our results have implications for understanding the role of the cytoskeleton in the pathophysiology of kidney disease and may lead to a better understanding of the genetic basis of susceptibility to kidney damage

Journal ArticleDOI
TL;DR: Cl cloning and characterization of a human RAS effector homologue (RASSF1) located in the 120-kb region of minimal homozygous deletion indicate a potential role for RASSF 1A as a lung tumour suppressor gene.
Abstract: Allelic loss at the short arm of chromosome 3 is one of the most common and earliest events in the pathogenesis of lung cancer, and is observed in more than 90% of small-cell lung cancers (SCLCs) and in 50-80% of non-small-cell lung cancers (NSCLCs). Frequent and early loss of heterozygosity and the presence of homozygous deletions suggested a critical role of the region 3p21.3 in tumorigenesis and a region of common homozygous deletion in 3p21.3 was narrowed to 120 kb (ref. 5). Several putative tumour-suppressor genes located at 3p21 have been characterized, but none of these genes appear to be altered in lung cancer. Here we describe the cloning and characterization of a human RAS effector homologue (RASSF1) located in the 120-kb region of minimal homozygous deletion. We identified three transcripts, A, B and C, derived from alternative splicing and promoter usage. The major transcripts A and C were expressed in all normal tissues. Transcript A was missing in all SCLC cell lines analysed and in several other cancer cell lines. Loss of expression was correlated with methylation of the CpG-island promoter sequence of RASSF1A. The promoter was highly methylated in 24 of 60 (40%) primary lung tumours, and 4 of 41 tumours analysed carried missense mutations. Re-expression of transcript A in lung carcinoma cells reduced colony formation, suppressed anchorage-independent growth and inhibited tumour formation in nude mice. These characteristics indicate a potential role for RASSF1A as a lung tumour suppressor gene.

Journal ArticleDOI
TL;DR: It is demonstrated here that mice lacking Ucp2 following targeted gene disruption are not obese and have a normal response to cold exposure or high-fat diet and a role for UCP2 in the limitation of ROS and macrophage-mediated immunity is indicated.
Abstract: The gene Ucp2 is a member of a family of genes found in animals and plants, encoding a protein homologous to the brown fat uncoupling protein Ucp1 (refs 1–3). As Ucp2 is widely expressed in mammalian tissues4,5, uncouples respiration6 and resides within a region of genetic linkage to obesity4, a role in energy dissipation has been proposed. We demonstrate here, however, that mice lacking Ucp2 following targeted gene disruption are not obese and have a normal response to cold exposure or high-fat diet. Expression of Ucp2 is robust in spleen, lung and isolated macrophages4,5,7, suggesting a role for Ucp2 in immunity or inflammatory responsiveness4. We investigated the response to infection with Toxoplasma gondii in Ucp2−/− mice, and found that they are completely resistant to infection, in contrast with the lethality observed in wild-type littermates. Parasitic cysts and inflammation sites in brain were significantly reduced in Ucp2−/− mice (63% decrease, P<0.04). Macrophages from Ucp2 −/− mice generated more reactive oxygen species than wild-type mice (80% increase, P<0.001) in response to T. gondii, and had a fivefold greater toxoplasmacidal activity in vitro compared with wild-type mice (P<0.001 ), which was absent in the presence of a quencher of reactive oxygen species (ROS). Our results indicate a role for Ucp2 in the limitation of ROS and macrophage-mediated immunity.

Journal ArticleDOI
TL;DR: DNMT1 not only maintains DNA methylation, but also may directly target, in a heritable manner, transcriptionally repressive chromatin to the genome during DNA replication.
Abstract: DNA methylation can contribute to transcriptional silencing through several transcriptionally repressive complexes, which include methyl-CpG binding domain proteins (MBDs) and histone deacetylases (HDACs) We show here that the chief enzyme that maintains mammalian DNA methylation, DNMT1, can also establish a repressive transcription complex The non-catalytic amino terminus of DNMT1 binds to HDAC2 and a new protein, DMAP1 (for DNMT1 associated protein), and can mediate transcriptional repression DMAP1 has intrinsic transcription repressive activity, and binds to the transcriptional co-repressor TSG101 DMAP1 is targeted to replication foci through interaction with the far N terminus of DNMT1 throughout S phase, whereas HDAC2 joins DNMT1 and DMAP1 only during late S phase, providing a platform for how histones may become deacetylated in heterochromatin following replication Thus, DNMT1 not only maintains DNA methylation, but also may directly target, in a heritable manner, transcriptionally repressive chromatin to the genome during DNA replication

Journal ArticleDOI
TL;DR: Evidence of gene expression at low doses of vector suggests that dose calculations based on animal data may have overestimated the amount of vector required to achieve therapeutic levels in humans, and that the approach offers the possibility of converting severe haemophilia B to a milder form of the disease.
Abstract: Pre-clinical studies in mice and haemophilic dogs have shown that introduction of an adeno-associated viral (AAV) vector encoding blood coagulation factor IX (FIX) into skeletal muscle results in sustained expression of F.IX at levels sufficient to correct the haemophilic phenotype. On the basis of these data and additional pre-clinical studies demonstrating an absence of vector-related toxicity, we initiated a clinical study of intramuscular injection of an AAV vector expressing human F.IX in adults with severe haemophilia B. The study has a dose-escalation design, and all patients have now been enrolled in the initial dose cohort (2 x 10(11) vg/kg). Assessment in the first three patients of safety and gene transfer and expression show no evidence of germline transmission of vector sequences or formation of inhibitory antibodies against F.IX. We found that the vector sequences are present in muscle by PCR and Southern-blot analyses of muscle biopsies and we demonstrated expression of F.IX by immunohistochemistry. We observed modest changes in clinical endpoints including circulating levels of F.IX and frequency of FIX protein infusion. The evidence of gene expression at low doses of vector suggests that dose calculations based on animal data may have overestimated the amount of vector required to achieve therapeutic levels in humans, and that the approach offers the possibility of converting severe haemophilia B to a milder form of the disease.

Journal ArticleDOI
TL;DR: It is established that BMP15 is essential for female fertility and that natural mutations in an ovary-derived factor can cause both increased ovulation rate and infertility phenotypes in a dosage-sensitive manner.
Abstract: Multiple ovulations are uncommon in humans, cattle and many breeds of sheep. Pituitary gonadotrophins and as yet unidentified ovarian factors precisely regulate follicular development so that, normally, only one follicle is selected to ovulate. The Inverdale (FecXI) sheep, however, carries a naturally occurring X-linked mutation that causes increased ovulation rate and twin and triplet births in heterozygotes (FecXI/FecX+; ref. 1), but primary ovarian failure in homozygotes (FecXI/FecXI; ref. 2). Germ-cell development, formation of the follicle and the earliest stages of follicular growth are normal in FecXI/FecXI sheep, but follicular development beyond the primary stage is impaired3,4. A second family unrelated to the Inverdale sheep also has the same X-linked phenotype5 (Hanna, FecXH). Crossing FecXI with FecXH animals produces FecXI/FecXH infertile females phenotypically indistinguishable from FecXI/FecXI females6. We report here that the FecXI locus maps to an orthologous chromosomal region syntenic to human Xp11.2–11.4, which contains BMP15, encoding bone morphogenetic protein 15 (also known as growth differentiation factor 9B (GDF9B)). Whereas BMP15 is a member of the transforming growth factor β (TGFβ) superfamily and is specifically expressed in oocytes, its function is unknown7,8,9. We show that independent germline point mutations exist in FecXI and FecXH carriers. These findings establish that BMP15 is essential for female fertility and that natural mutations in an ovary-derived factor can cause both increased ovulation rate and infertility phenotypes in a dosage-sensitive manner.

Journal ArticleDOI
TL;DR: Caloric restriction, which retards the ageing process in mammals, selectively attenuated the age-associated induction of genes encoding inflammatory and stress responses, which resulted in a gene-expression profile indicative of an inflammatory response, oxidative stress and reduced neurotrophic support in both brain regions.
Abstract: Ageing of the brain leads to impairments in cognitive and motor skills, and is the major risk factor for several common neurological disorders such as Alzheimer disease (AD) and Parkinson disease (PD). Recent studies suggest that normal brain ageing is associated with subtle morphological and functional alterations in specific neuronal circuits, as opposed to large-scale neuronal loss1. In fact, ageing of the central nervous system in diverse mammalian species shares many features, such as atrophy of pyramidal neurons, synaptic atrophy, decrease of striatal dopamine receptors, accumulation of fluorescent pigments, cytoskeletal abnormalities, and reactive astrocytes and microglia2. To provide the first global analysis of brain ageing at the molecular level, we used oligonucleotide arrays representing 6,347 genes to determine the gene-expression profile of the ageing neocortex and cerebellum in mice. Ageing resulted in a gene-expression profile indicative of an inflammatory response, oxidative stress and reduced neurotrophic support in both brain regions. At the transcriptional level, brain ageing in mice displays parallels with human neurodegenerative disorders. Caloric restriction, which retards the ageing process in mammals, selectively attenuated the age-associated induction of genes encoding inflammatory and stress responses.

Journal ArticleDOI
TL;DR: This work monitored gene-expression changes in Arabidopsis thaliana under 14 different SAR-inducing or SAR-repressing conditions using a DNA microarray and derived groups of genes with common regulation patterns, or regulons.
Abstract: Infected plants undergo transcriptional reprogramming during initiation of both local defence and systemic acquired resistance (SAR). We monitored gene-expression changes in Arabidopsis thaliana under 14 different SAR-inducing or SAR-repressing conditions using a DNA microarray representing approximately 25-30% of all A. thaliana genes. We derived groups of genes with common regulation patterns, or regulons. The regulon containing PR-1, a reliable marker gene for SAR in A. thaliana, contains known PR genes and novel genes likely to function during SAR and disease resistance. We identified a common promoter element in genes of this regulon that binds members of a plant-specific transcription factor family. Our results extend expression profiling to definition of regulatory networks and gene discovery in plants.

Journal ArticleDOI
TL;DR: It is concluded that germline mutations in PRKAR1A, an apparent tumour-suppressor gene, are responsible for the CNC phenotype in a subset of patients with this disease.
Abstract: Carney complex (CNC) is a multiple neoplasia syndrome characterized by spotty skin pigmentation, cardiac and other myxomas, endocrine tumours and psammomatous melanotic schwannomas. CNC is inherited as an autosomal dominant trait and the genes responsible have been mapped to 2p16 and 17q22-24 (refs 6, 7). Because of its similarities to the McCune-Albright syndrome and other features, such as paradoxical responses to endocrine signals, genes implicated in cyclic nucleotide-dependent signalling have been considered candidates for causing CNC (ref. 10). In CNC families mapping to 17q, we detected loss of heterozygosity (LOH) in the vicinity of the gene (PRKAR1A) encoding protein kinase A regulatory subunit 1-alpha (RIalpha), including a polymorphic site within its 5' region. We subsequently identified three unrelated kindreds with an identical mutation in the coding region of PRKAR1A. Analysis of additional cases revealed the same mutation in a sporadic case of CNC, and different mutations in three other families, including one with isolated inherited cardiac myxomas. Analysis of PKA activity in CNC tumours demonstrated a decreased basal activity, but an increase in cAMP-stimulated activity compared with non-CNC tumours. We conclude that germline mutations in PRKAR1A, an apparent tumour-suppressor gene, are responsible for the CNC phenotype in a subset of patients with this disease.

Journal ArticleDOI
TL;DR: The data indicate that OT is necessary for the normal development of social memory in mice and support the hypothesis that social memory has a neural basis distinct from other forms of memory.
Abstract: The development of social familiarity in rodents depends predominantly on olfactory cues and can critically influence reproductive success. Researchers have operationally defined this memory by a reliable decrease in olfactory investigation in repeated or prolonged encounters with a conspecific. Brain oxytocin (OT) and vasopressin (AVP) seem to modulate a range of social behaviour from parental care to mate guarding. Pharmacological studies indicate that AVP administration may enhance social memory, whereas OT administration may either inhibit or facilitate social memory depending on dose, route or paradigm. We found that male mice mutant for the oxytocin gene (Oxt-/-) failed to develop social memory, whereas wild-type (Oxt+/+) mice showed intact social memory. Measurement of both olfactory foraging and olfactory habituation tasks indicated that olfactory detection of non-social stimuli is intact in Oxt-/- mice. Spatial memory and behavioural inhibition measured in a Morris water-maze, Y-maze, or habituation of an acoustic startle also seemed intact. Treatment with OT but not AVP rescued social memory in Oxt-/- mice, and treatment with an OT antagonist produced a social amnesia-like effect in Oxt+/+ mice. Our data indicate that OT is necessary for the normal development of social memory in mice and support the hypothesis that social memory has a neural basis distinct from other forms of memory.

Journal ArticleDOI
TL;DR: The results indicate that nuclear translocation of the genome is a rate-limiting step in lentiviral infection of both dividing and non-dividing cells, and that it depends on protein and nucleic acid sequence determinants.
Abstract: Gene-transfer vectors based on lentiviruses are distinguished by their ability to transduce non-dividing cells. The HIV-1 proteins Matrix, Vpr and Integrase have been implicated in the nuclear import of the viral genome in non-dividing cells. Here we show that a sequence within pol is also required in cis. It contains structural elements previously associated with the progress of reverse transcription in target cells. We restored these elements in cis within late-generation lentiviral vectors. The new vector transduced to a much higher efficiency several types of human primary cells, when both growing and growth-arrested, including haematopoietic stem cells assayed by long-term repopulation of NOD/SCID mice. On in vivo administration into SCID mice, the vector induced higher plasma levels of human clotting factor IX (F.IX) than non-modified vector. Our results indicate that nuclear translocation of the genome is a rate-limiting step in lentiviral infection of both dividing and non-dividing cells, and that it depends on protein and nucleic acid sequence determinants. Full rescue of this step in lentivirus-based vectors improves performance for gene-therapy applications.