scispace - formally typeset
Search or ask a question

Showing papers in "The Astronomical Journal in 2017"


Journal ArticleDOI
TL;DR: SDSS-IV as mentioned in this paper is a project encompassing three major spectroscopic programs: the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA), the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and the Time Domain Spectroscopy Survey (TDSS).
Abstract: We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median $z\sim 0.03$). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between $z\sim 0.6$ and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.

1,200 citations


Journal ArticleDOI
Steven R. Majewski1, Ricardo P. Schiavon2, Peter M. Frinchaboy3, Carlos Allende Prieto4, Carlos Allende Prieto5, Robert H. Barkhouser6, Dmitry Bizyaev7, Dmitry Bizyaev8, Basil Blank, Sophia Brunner1, Adam Burton1, Ricardo Carrera5, Ricardo Carrera4, S. Drew Chojnowski1, S. Drew Chojnowski7, Katia Cunha9, Courtney R. Epstein10, Greg Fitzgerald, Ana E. García Pérez1, Ana E. García Pérez5, Fred Hearty1, Fred Hearty11, Chuck Henderson, Jon A. Holtzman7, Jennifer A. Johnson10, Charles R. Lam1, James E. Lawler12, Paul Maseman9, Szabolcs Mészáros4, Szabolcs Mészáros5, Szabolcs Mészáros13, Matthew J. Nelson1, Duy Coung Nguyen14, David L. Nidever1, David L. Nidever15, Marc H. Pinsonneault10, Matthew Shetrone16, Stephen A. Smee6, Verne V. Smith9, T. Stolberg, Michael F. Skrutskie1, E. Walker1, John C. Wilson1, Gail Zasowski6, Gail Zasowski1, Friedrich Anders17, Sarbani Basu18, Stephane Beland19, Michael R. Blanton20, Jo Bovy21, Jo Bovy14, Joel R. Brownstein22, Joleen K. Carlberg23, Joleen K. Carlberg1, William J. Chaplin24, William J. Chaplin25, Cristina Chiappini17, Daniel J. Eisenstein26, Yvonne Elsworth25, Diane Feuillet7, Scott W. Fleming27, Scott W. Fleming28, Jessica Galbraith-Frew22, Rafael A. García29, D. Anibal García-Hernández5, D. Anibal García-Hernández4, Bruce Gillespie6, Léo Girardi30, James E. Gunn21, Sten Hasselquist7, Sten Hasselquist1, Michael R. Hayden7, Saskia Hekker31, Saskia Hekker24, Inese I. Ivans22, Karen Kinemuchi7, Mark A. Klaene7, Suvrath Mahadevan11, Savita Mathur32, Benoit Mosser33, Demitri Muna10, Jeffrey A. Munn, Robert C. Nichol, Robert W. O'Connell1, John K. Parejko18, Annie C. Robin34, H. J. Rocha-Pinto35, M. Schultheis36, Aldo Serenelli5, Neville Shane1, Victor Silva Aguirre24, Jennifer Sobeck1, Benjamin A. Thompson3, Nicholas W. Troup1, David H. Weinberg10, Olga Zamora5, Olga Zamora4 
TL;DR: In this article, the Hungarian National Research, Development and Innovation Office (K-119517) and Hungarian National Science Foundation (KNFI) have proposed a method to detect the presence of asteroids in Earth's magnetic field.
Abstract: National Science Foundation [AST-1109178, AST-1616636]; Gemini Observatory; Spanish Ministry of Economy and Competitiveness [AYA-2011-27754]; NASA [NNX12AE17G]; Hungarian Academy of Sciences; Hungarian NKFI of the Hungarian National Research, Development and Innovation Office [K-119517]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science

1,193 citations


Journal ArticleDOI
TL;DR: The size of a planet is an observable property directly connected to the physics of its formation and evolution as discussed by the authors, and the size of close-in (P < 100 days) small planets can be divided into two size regimes: R_p < 1.5 R⊕ or smaller with varying amounts of low-density gas that determine their total sizes.
Abstract: The size of a planet is an observable property directly connected to the physics of its formation and evolution. We used precise radius measurements from the California-Kepler Survey to study the size distribution of 2025 Kepler planets in fine detail. We detect a factor of ≥2 deficit in the occurrence rate distribution at 1.5–2.0 R⊕. This gap splits the population of close-in (P < 100 days) small planets into two size regimes: R_p < 1.5 R⊕ and R_p = 2.0-3.0 R⊕, with few planets in between. Planets in these two regimes have nearly the same intrinsic frequency based on occurrence measurements that account for planet detection efficiencies. The paucity of planets between 1.5 and 2.0 R⊕ supports the emerging picture that close-in planets smaller than Neptune are composed of rocky cores measuring 1.5 R⊕ or smaller with varying amounts of low-density gas that determine their total sizes.

1,100 citations


Journal ArticleDOI
TL;DR: In this paper, the covariance function is expressed as a mixture of complex exponentials, without requiring evenly spaced observations or uniform noise, which can be used for probabilistic inference of stellar rotation periods, asteroseismic oscillation spectra and transiting planet parameters.
Abstract: The growing field of large-scale time domain astronomy requires methods for probabilistic data analysis that are computationally tractable, even with large data sets. Gaussian processes (GPs) are a popular class of models used for this purpose, but since the computational cost scales, in general, as the cube of the number of data points, their application has been limited to small data sets. In this paper, we present a novel method for GPs modeling in one dimension where the computational requirements scale linearly with the size of the data set. We demonstrate the method by applying it to simulated and real astronomical time series data sets. These demonstrations are examples of probabilistic inference of stellar rotation periods, asteroseismic oscillation spectra, and transiting planet parameters. The method exploits structure in the problem when the covariance function is expressed as a mixture of complex exponentials, without requiring evenly spaced observations or uniform noise. This form of covariance arises naturally when the process is a mixture of stochastically driven damped harmonic oscillators-providing a physical motivation for and interpretation of this choice-but we also demonstrate that it can be a useful effective model in some other cases. We present a mathematical description of the method and compare it to existing scalable GP methods. The method is fast and interpretable, with a range of potential applications within astronomical data analysis and beyond. We provide well-tested and documented open-source implementations of this method in C++, Python, and Julia.

611 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present empirical measurements of the radii of 116 stars that host transiting planets using only direct observables-the bolometric flux at Earth, the effective temperature, and the parallax provided by the Gaia first data release-and thus are virtually model independent, extinction being the only free parameter.
Abstract: We present empirical measurements of the radii of 116 stars that host transiting planets. These radii are determined using only direct observables-the bolometric flux at Earth, the effective temperature, and the parallax provided by the Gaia first data release-and thus are virtually model independent, extinction being the only free parameter. We also determine each star's mass using our newly determined radius and the stellar density, itself a virtually model independent quantity from previously published transit analyses. These stellar radii and masses are in turn used to redetermine the transiting planet radii and masses, again using only direct observables. The median uncertainties on the stellar radii and masses are ~8% and ~30%, respectively, and the resulting uncertainties on the planet radii and masses are ~9% and ~22%, respectively. These accuracies are generally larger than previously published model-dependent precisions of ~5% and ~6% on the planet radii and masses, respectively, but the newly determined values are purely empirical. We additionally report radii for 242 stars hosting radial-velocity (non-transiting) planets, with median achieved accuracy of ~2%. Using our empirical stellar masses we verify that the majority of putative "retired A stars" in the sample are indeed more massive than ~1.2 Msun. Most importantly, the bolometric fluxes and angular radii reported here for a total of 498 planet host stars-with median accuracies of 1.7% and 1.8%, respectively-serve as a fundamental dataset to permit the re-determination of transiting planet radii and masses with the Gaia second data release to ~3% and ~5% accuracy, better than currently published precisions, and determined in an entirely empirical fashion.

353 citations


Journal ArticleDOI
TL;DR: AstroImageJ (AIJ) as discussed by the authors is a GUI-driven, public domain, Java-based, software package for general image processing traditionally used mainly in life sciences fields.
Abstract: ImageJ is a graphical user interface (GUI) driven, public domain, Java-based, software package for general image processing traditionally used mainly in life sciences fields. The image processing capabilities of ImageJ are useful and extendable to other scientific fields. Here we present AstroImageJ (AIJ), which provides an astronomy specific image display environment and tools for astronomy specific image calibration and data reduction. Although AIJ maintains the general purpose image processing capabilities of ImageJ, AIJ is streamlined for time-series differential photometry, light curve detrending and fitting, and light curve plotting, especially for applications requiring ultra-precise light curves (e.g., exoplanet transits). AIJ reads and writes standard Flexible Image Transport System (FITS) files, as well as other common image formats, provides FITS header viewing and editing, and is World Coordinate System aware, including an automated interface to the astrometry.net web portal for plate solving images. AIJ provides research grade image calibration and analysis tools with a GUI driven approach, and easily installed cross-platform compatibility. It enables new users, even at the level of undergraduate student, high school student, or amateur astronomer, to quickly start processing, modeling, and plotting astronomical image data with one tightly integrated software package.

291 citations



Journal ArticleDOI
TL;DR: The California-Kepler Survey (CKS) as mentioned in this paper is an observational program to improve our knowledge of the properties of stars found to host transiting planets by NASA's Kepler Mission.
Abstract: The California-Kepler Survey (CKS) is an observational program to improve our knowledge of the properties of stars found to host transiting planets by NASA's Kepler Mission. The improvement stems from new high-resolution optical spectra obtained using HIRES at the W. M. Keck Observatory. The CKS stellar sample comprises 1305 stars classified as Kepler Objects of Interest, hosting a total of 2075 transiting planets. The primary sample is magnitude-limited (K_p < 14.2) and contains 960 stars with 1385 planets. The sample was extended to include some fainter stars that host multiple planets, ultra short period planets, or habitable zone planets. The spectroscopic parameters were determined with two different codes, one based on template matching and the other on direct spectral synthesis using radiative transfer. We demonstrate a precision of 60 K in T_(eff), 0.10 dex in surface gravity, 0.04 dex in [Fe/H], and 1.0 km s^(-1) in projected rotational velocity. In this paper we describe the CKS project and present a uniform catalog of spectroscopic parameters. Subsequent papers in this series present catalogs of derived stellar properties such as mass, radius and age; revised planet properties; and statistical explorations of the ensemble. CKS is the largest survey to determine the properties of Kepler stars using a uniform set of high-resolution, high signal-to-noise ratio spectra. The HIRES spectra are available to the community for independent analyses.

277 citations


Journal ArticleDOI
TL;DR: The Accepted Manuscript version of the following article as mentioned in this paper is available online at https://doi.org/10.3847/1538-3881/aa66ca.
Abstract: This document is the Accepted Manuscript version of the following article: R. Paul Butler, et al, The LCES HIRES/Keck Precision Radial Velocity Exoplanet Survey, The Astronomical Journal, Vol 153 (5), 19 pp., published 13 April 2017. The Version of Record is available online at doi: https://doi.org/10.3847/1538-3881/aa66ca. Paper data available at: http://home.dtm.ciw.edu/ebps/data/. © 2017. The American Astronomical Society. All rights reserved.

239 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present results from high-resolution, optical to near-IR imaging of host stars of Kepler Objects of Interest (KOIs), identified in the original Kepler field.
Abstract: We present results from high-resolution, optical to near-IR imaging of host stars of Kepler Objects of Interest (KOIs), identified in the original Kepler field. Part of the data were obtained under the Kepler imaging follow-up observation program over six years (2009–2015). Almost 90% of stars that are hosts to planet candidates or confirmed planets were observed. We combine measurements of companions to KOI host stars from different bands to create a comprehensive catalog of projected separations, position angles, and magnitude differences for all detected companion stars (some of which may not be bound). Our compilation includes 2297 companions around 1903 primary stars. From high-resolution imaging, we find that ~10% (~30%) of the observed stars have at least one companion detected within 1" (4"). The true fraction of systems with close (≾4") companions is larger than the observed one due to the limited sensitivities of the imaging data. We derive correction factors for planet radii caused by the dilution of the transit depth: assuming that planets orbit the primary stars or the brightest companion stars, the average correction factors are 1.06 and 3.09, respectively. The true effect of transit dilution lies in between these two cases and varies with each system. Applying these factors to planet radii decreases the number of KOI planets with radii smaller than 2 R_⊕ by ~2%–23% and thus affects planet occurrence rates. This effect will also be important for the yield of small planets from future transit missions such as TESS.

234 citations


Journal ArticleDOI
TL;DR: In this paper, the SDSS-IV MaNGA survey is described and the final properties of the main samples along with important considerations for using these samples for science, while simultaneously optimizing the size distribution of the integral field units (IFUs), the IFU allocation strategy and the target density to produce a survey defined in terms of maximizing S/N, spatial resolution, and sample size.
Abstract: We describe the sample design for the SDSS-IV MaNGA survey and present the final properties of the main samples along with important considerations for using these samples for science. Our target selection criteria were developed while simultaneously optimizing the size distribution of the MaNGA integral field units (IFUs), the IFU allocation strategy, and the target density to produce a survey defined in terms of maximizing S/N, spatial resolution, and sample size. Our selection strategy makes use of redshift limits that only depend on i-band absolute magnitude ($M_i$), or, for a small subset of our sample, $M_i$ and color (NUV-i). Such a strategy ensures that all galaxies span the same range in angular size irrespective of luminosity and are therefore covered evenly by the adopted range of IFU sizes. We define three samples: the Primary and Secondary samples are selected to have a flat number density with respect to $M_i$ and are targeted to have spectroscopic coverage to 1.5 and 2.5 effective radii (Re), respectively. The Color-Enhanced supplement increases the number of galaxies in the low-density regions of color-magnitude space by extending the redshift limits of the Primary sample in the appropriate color bins. The samples cover the stellar mass range $5\times10^8 \leq M_* \leq 3\times10^{11} M_{\odot}$ and are sampled at median physical resolutions of 1.37 kpc and 2.5 kpc for the Primary and Secondary samples respectively. We provide weights that will statistically correct for our luminosity and color-dependent selection function and IFU allocation strategy, thus correcting the observed sample to a volume limited sample.

Journal ArticleDOI
TL;DR: In this article, the Lasker Data Science Research Fellowship at the Space Telescope Science Institute in Baltimore, MD, USA has been used for data processing at the University of Utah.
Abstract: Barry M. Lasker Data Science Research Fellowship - Space Telescope Science Institute in Baltimore, MD, USA; Gemini-CONICYT [32140007]; National Science Foundation (NSF) [AST-1517592]; NSF [AST-1311835, AST-1715662]; Ramon y Cajal fellowship [RYC-2013-14182]; Spanish Ministry of Economy and Competitiveness (MINECO) [AYA-2014-58082-P]; Premium Postdoctoral Research Program of the Hungarian Academy of Sciences; Hungarian NKFI grants of the Hungarian National Research, Development and Innovation Office [K-119517]; Alfred P. Sloan Foundation; U.S. Department of Energy Office of Science; Center for High-Performance Computing at the University of Utah; Brazilian Participation Group; Carnegie Institution for Science; Carnegie Mellon University; Chilean Participation Group; French Participation Group; Harvard-Smithsonian Center for Astrophysics; Instituto de Astroisica de Canarias; Johns Hopkins University; Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo; Lawrence Berkeley National Laboratory; Leibniz Institut fur Astrophysik Potsdam (AIP); Max-Planck-Institut fur Astronomie (MPIA Heidelberg); Max-Planck-Institut fur Astrophysik (MPA Garching); Max-Planck-Institut fur Extraterrestrische Physik (MPE); National Astronomical Observatory of China; New Mexico State University; New York University; University of Notre Dame; Observatorio Nacional/MCTI; Ohio State University; Pennsylvania State University; Shanghai Astronomical Observatory; United Kingdom Participation Group; Universidad Nacional Autonoma de Mexico; University of Arizona; University of Colorado Boulder; University of Oxford; University of Portsmouth; University of Utah; University of Virginia; University of Washington; University of Wisconsin; Vanderbilt University; Yale University; National Aeronautics and Space Administration; National Science Foundation

Journal ArticleDOI
TL;DR: In this article, the authors used the Spitzer Space Telescope (HST) spectroscopic phase curve results of WASP-43b to obtain a precise dayside hemisphere H2O abundance and derived a corresponding metallicity estimate that is consistent with being solar.
Abstract: Previous measurements of heat redistribution efficiency (the ability to transport energy from a planet's highly irradiated dayside to its eternally dark nightside) show considerable variation between exoplanets. Theoretical models predict a positive correlation between heat redistribution efficiency and temperature for tidally locked planets; however, recent Hubble Space Telescope (HST) WASP-43b spectroscopic phase curve results are inconsistent with current predictions. Using the Spitzer Space Telescope, we obtained a total of three phase curve observations of WASP-43b (P = 0.813 days) at 3.6 and 4.5 μm. The first 3.6 μm visit exhibits spurious nightside emission that requires invoking unphysical conditions in our cloud-free atmospheric retrievals. The two other visits exhibit strong day–night contrasts that are consistent with the HST data. To reconcile the departure from theoretical predictions, WASP-43b would need to have a high-altitude, nightside cloud/haze layer blocking its thermal emission. Clouds/hazes could be produced within the planet's cool, nearly retrograde mid-latitude flows before dispersing across its nightside at high altitudes. Since mid-latitude flows only materialize in fast-rotating ($\lesssim 1$ day) planets, this may explain an observed trend connecting measured day–night contrast with planet rotation rate that matches all current Spitzer phase curve results. Combining independent planetary emission measurements from multiple phases, we obtain a precise dayside hemisphere H2O abundance ($2.5\times {10}^{-5}\mbox{--}1.1\times {10}^{-4}$ at 1σ confidence) and, assuming chemical equilibrium and a scaled solar abundance pattern, we derive a corresponding metallicity estimate that is consistent with being solar (0.4–1.7). Using the retrieved global CO+CO2 abundance under the same assumptions, we estimate a comparable metallicity of 0.3–1.7× solar. This is the first time that precise abundance and metallicity constraints have been determined from multiple molecular tracers for a transiting exoplanet.

Journal ArticleDOI
TL;DR: In this paper, stellar and planetary properties for 1305 Kepler Objects of Interest (KOIs) hosting 2025 planet candidates observed as part of the California-Kepler Survey were presented.
Abstract: We present stellar and planetary properties for 1305 Kepler Objects of Interest (KOIs) hosting 2025 planet candidates observed as part of the California-Kepler Survey. We combine spectroscopic constraints, presented in Paper I, with stellar interior modeling to estimate stellar masses, radii, and ages. Stellar radii are typically constrained to 11%, compared to 40% when only photometric constraints are used. Stellar masses are constrained to 4%, and ages are constrained to 30%. We verify the integrity of the stellar parameters through comparisons with asteroseismic studies and Gaia parallaxes. We also recompute planetary radii for 2025 planet candidates. Because knowledge of planetary radii is often limited by uncertainties in stellar size, we improve the uncertainties in planet radii from typically 42% to 12%. We also leverage improved knowledge of stellar effective temperature to recompute incident stellar fluxes for the planets, now precise to 21%, compared to a factor of two when derived from photometry.

Journal ArticleDOI
TL;DR: In this paper, high-resolution spectroscopic detection of TiO molecular signature in the day-side spectra of WASP-33 b, the second hottest known hot Jupiter, was reported.
Abstract: We report high-resolution spectroscopic detection of TiO molecular signature in the day-side spectra of WASP-33 b, the second hottest known hot Jupiter. We used High-Dispersion Spectrograph (HDS; R $\\sim$ 165,000) in the wavelength range of 0.62 -- 0.88 $\\mu$m with the Subaru telescope to obtain the day-side spectra of WASP-33 b. We suppress and correct the systematic effects of the instrument, the telluric and stellar lines by using SYSREM algorithm after the selection of good orders based on Barnard star and other M-type stars. We detect a 4.8-$\\sigma$ signal at an orbital velocity of $K_{p}$= +237.5 $^{+13.0}_{-5.0}$ km s$^{-1}$ and systemic velocity $V_{sys}$= -1.5 $^{+4.0} _{-10.5}$ km s$^{-1}$, which agree with the derived values from the previous analysis of primary transit. Our detection with the temperature inversion model implies the existence of stratosphere in its atmosphere, however, we were unable to constrain the volume-mixing ratio of the detected TiO. We also measure the stellar radial velocity and use it to obtain a more stringent constraint on the orbital velocity, $K_{p} = 239.0^{+2.0}_{-1.0}$ km s$^{-1}$. Our results demonstrate that high-dispersion spectroscopy is a powerful tool to characterize the atmosphere of an exoplanet, even in the optical wavelength range, and show a promising potential in using and developing similar techniques with high-dispersion spectrograph on current 10m-class and future extremely large telescopes.

Journal ArticleDOI
TL;DR: WASP-39b is a hot Saturn-mass exoplanet with a predicted clear atmosphere based on observations in the optical and infrared as mentioned in this paper, which is relatively high with respect to the currently established mass-metallicity trends.
Abstract: WASP-39b is a hot Saturn-mass exoplanet with a predicted clear atmosphere based on observations in the optical and infrared. Here, we complete the transmission spectrum of the atmosphere with observations in the near-infrared (NIR) over three water absorption features with the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) G102 (0.8–1.1 μm) and G141 (1.1–1.7 μm) spectroscopic grisms. We measure the predicted high-amplitude H_2O feature centered at 1.4 μm and the smaller amplitude features at 0.95 and 1.2 μm, with a maximum water absorption amplitude of 2.4 planetary scale heights. We incorporate these new NIR measurements into previously published observational measurements to complete the transmission spectrum from 0.3 to 5 μm. From these observed water features, combined with features in the optical and IR, we retrieve a well constrained temperature T_(eq) = 1030_(-20)^(+30) K, and atmospheric metallicity 151_(-46)^(+48) x solar, which is relatively high with respect to the currently established mass–metallicity trends. This new measurement in the Saturn-mass range hints at further diversity in the planet formation process relative to our solar system giants.

Journal ArticleDOI
TL;DR: In this paper, the US Naval Observatory CCD Astrograph catalog (UCAC) all-sky observations were performed from first principles using the TGAS stars in the 8-11 mag range as the reference star catalog.
Abstract: New astrometric reductions of the US Naval Observatory CCD Astrograph Catalog (UCAC) all-sky observations were performed from first principles using the TGAS stars in the 8–11 mag range as the reference star catalog. Significant improvements in the astrometric solutions were obtained, and the UCAC5 catalog of mean positions at a mean epoch near 2001 was generated. By combining UCAC5 with Gaia DR1 data, new proper motions were obtained for over 107 million stars on the Gaia coordinate system, with typical accuracies of 1–2 mas yr−1 (R = 11–15 mag) and about 5 mas yr−1 at 16th mag. Proper motions of most TGAS stars are improved over their Gaia data and the precision level of TGAS proper motions is extended to many millions more, fainter stars. External comparisons were made using stellar cluster fields and extragalactic sources. The TGAS data allow us to derive the limiting precision of the UCAC x, y data, which is significantly better than1/100 pixel.

Journal ArticleDOI
TL;DR: In this paper, the authors reported the detection of water absorption features in the day side spectrum of the first known hot Jupiter, 51 Peg b, confirming the star-planet system to be a double-lined spectroscopic binary.
Abstract: We report the detection of water absorption features in the day side spectrum of the first-known hot Jupiter, 51 Peg b, confirming the star–planet system to be a double-lined spectroscopic binary. We use high-resolution ($R\approx $ 100,000), $3.2\,\mu {\rm{m}}$ spectra taken with CRIRES/VLT to trace the radial-velocity shift of the water features in the planet's day side atmosphere during 4 hr of its 4.23 day orbit after superior conjunction. We detect the signature of molecular absorption by water at a significance of $5.6\sigma $ at a systemic velocity of ${V}_{\mathrm{sys}}=-33\pm 2$ km s−1, coincident with the 51 Peg host star, with a corresponding orbital velocity ${K}_{{\rm{P}}}={133}_{-3.5}^{+4.3}$ km s−1. This translates directly to a planet mass of ${M}_{{\rm{p}}}={0.476}_{-0.031}^{+0.032}\,{M}_{{\rm{J}}}$, placing it at the transition boundary between Jovian and Neptunian worlds. We determine upper and lower limits on the orbital inclination of the system of $70^\circ \lt i\lt 82\buildrel{\circ}\over{.} 2$. We also provide an updated orbital solution for 51 Peg b, using an extensive set of 639 stellar radial velocities measured between 1994 and 2013, finding no significant evidence of an eccentric orbit. We find no evidence of significant absorption or emission from other major carbon-bearing molecules of the planet, including methane and carbon dioxide. The atmosphere is non-inverted in the temperature–pressure region probed by these observations. The deepest absorption lines reach an observed relative contrast of $0.9\times {10}^{-3}$ with respect to the host star continuum flux at an angular separation of 3 milliarcseconds. This work is consistent with a previous tentative report of K-band molecular absorption for 51 Peg b by Brogi et al.

Journal ArticleDOI
TL;DR: In this article, the authors search for high-confidence comoving pairs of stars in the Tycho-Gaia Astrometric Solution (TGAS) data set, and find 13,085 comoving star pairs among 10,606 unique stars with separations as large as 10 pc.
Abstract: The primary sample of the Gaia Data Release 1 is the Tycho-Gaia Astrometric Solution (TGAS): ≈2 million Tycho-2 sources with improved parallaxes and proper motions relative to the initial catalog. This increased astrometric precision presents an opportunity to find new binary stars and moving groups. We search for high-confidence comoving pairs of stars in TGAS by identifying pairs of stars consistent with having the same 3D velocity using a marginalized likelihood ratio test to discriminate candidate comoving pairs from the field population. Although we perform some visualizations using (bias-corrected) inverse parallax as a point estimate of distance, the likelihood ratio is computed with a probabilistic model that includes the covariances of parallax and proper motions and marginalizes the (unknown) true distances and 3D velocities of the stars. We find 13,085 comoving star pairs among 10,606 unique stars with separations as large as 10 pc (our search limit). Some of these pairs form larger groups through mutual comoving neighbors: many of these pair networks correspond to known open clusters and OB associations, but we also report the discovery of several new comoving groups. Most surprisingly, we find a large number of very wide ( pc) separation comoving star pairs, the number of which increases with increasing separation and cannot be explained purely by false-positive contamination. Our key result is a catalog of high-confidence comoving pairs of stars in TGAS. We discuss the utility of this catalog for making dynamical inferences about the Galaxy, testing stellar atmosphere models, and validating chemical abundance measurements.

Journal ArticleDOI
TL;DR: In this article, a method for the determination of empirical masses of single stars through the combination of three direct observables with Gaia and Transiting Exoplanet Survey Satellite (TESS): (i) the surface gravity via granulation-driven variations in the TESS light curve, (ii) the bolometric flux at Earth via the broadband spectral energy distribution, and (iii) the distance via the Gaia parallax.
Abstract: We present a methodology for the determination of empirical masses of single stars through the combination of three direct observables with Gaia and Transiting Exoplanet Survey Satellite (TESS): (i) the surface gravity via granulation-driven variations in the TESS light curve, (ii) the bolometric flux at Earth via the broadband spectral energy distribution, and (iii) the distance via the Gaia parallax. We demonstrate the method using 525 Kepler stars for which these measures are available in the literature, and show that the stellar masses can be measured with this method to a precision of ~25%, limited by the surface-gravity precision of the granulation "flicker" method (~0.1 dex) and by the parallax uncertainties (~10% for the Kepler sample). We explore the impact of expected improvements in the surface gravity determinations—through the application of granulation background fitting and the use of recently published granulation-metallicity relations—and improvements in the parallaxes with the arrival of the Gaia second data release. We show that the application of this methodology to stars that will be observed by TESS should yield radii good to a few percent and masses good to ≈10%. Importantly, the method does not require the presence of an orbiting, eclipsing, or transiting body, nor does it require spatial resolution of the stellar surface. Thus, we can anticipate the determination of fundamental, accurate stellar radii and masses for hundreds of thousands of bright single stars—across the entire sky and spanning the Hertzsprung–Russell diagram—including those that will ultimately be found to host planets.

Journal ArticleDOI
TL;DR: The capabilities of VIP related to processing image sequences acquired using the angular differential imaging (ADI) observing technique are described and a novel ADI algorithm based on non-negative matrix factorization is presented, which comes from the same family of low-rank matrix approximations as PCA and provides fairly similar results.
Abstract: We present the Vortex Image Processing (VIP) library, a python package dedicated to astronomical high-contrast imaging Our package relies on the extensive python stack of scientific libraries and aims to provide a flexible framework for high-contrast data and image processing In this paper, we describe the capabilities of VIP related to processing image sequences acquired using the angular differential imaging (ADI) observing technique VIP implements functionalities for building high-contrast data processing pipelines, encompassing pre- and post-processing algorithms, potential source position and flux estimation, and sensitivity curve generation Among the reference point-spread function subtraction techniques for ADI post-processing, VIP includes several flavors of principal component analysis (PCA) based algorithms, such as annular PCA and incremental PCA algorithms capable of processing big datacubes (of several gigabytes) on a computer with limited memory Also, we present a novel ADI algorithm based on non-negative matrix factorization, which comes from the same family of low-rank matrix approximations as PCA and provides fairly similar results We showcase the ADI capabilities of the VIP library using a deep sequence on HR 8799 taken with the LBTI/LMIRCam and its recently commissioned L-band vortex coronagraph Using VIP, we investigated the presence of additional companions around HR 8799 and did not find any significant additional point source beyond the four known planets VIP is available at http://githubcom/vortex-exoplanet/VIP and is accompanied with Jupyter notebook tutorials illustrating the main functionalities of the library

Journal ArticleDOI
TL;DR: In this article, a uniform analysis of the transit timing variations (TTVs) of 145 planets from 55 Kepler multi-planetary systems was conducted to infer planet masses and eccentricities.
Abstract: We conduct a uniform analysis of the transit timing variations (TTVs) of 145 planets from 55 Kepler multiplanet systems to infer planet masses and eccentricities. Eighty of these planets do not have previously reported mass and eccentricity measurements. We employ two complementary methods to fit TTVs: Markov chain Monte Carlo simulations based on N-body integration and an analytic fitting approach. Mass measurements of 49 planets, including 12 without previously reported masses, meet our criterion for classification as robust. Using mass and radius measurements, we infer the masses of planets' gaseous envelopes for both our TTV sample as well as transiting planets with radial velocity observations. Insight from analytic TTV formulae allows us to partially circumvent degeneracies inherent to inferring eccentricities from TTV observations. We find that planet eccentricities are generally small, typically a few percent, but in many instances are non-zero.

Journal ArticleDOI
TL;DR: In this paper, a search for transiting planets in the ~800 Myr old Praesepe (Beehive, M44) Cluster from K2 light curves is presented. But the authors only identify seven candidates, six of which are statistically validated to be real planets, the last of which requires more data.
Abstract: Open clusters and young stellar associations are attractive sites to search for planets and to test theories of planet formation, migration, and evolution. We present our search for, and characterization of, transiting planets in the ~800 Myr old Praesepe (Beehive, M44) Cluster from K2 light curves. We identify seven planet candidates, six of which we statistically validate to be real planets, the last of which requires more data. For each host star we obtain high-resolution NIR spectra to measure its projected rotational broadening and radial velocity, the latter of which we use to confirm cluster membership. We combine low-resolution spectra with the known cluster distance and metallicity to provide precise temperatures, masses, radii, and luminosities for the host stars. Combining our measurements of rotational broadening, rotation periods, and our derived stellar radii, we show that all planetary orbits are consistent with alignment to their host star's rotation. We fit the K2 light curves, including priors on stellar density to put constraints on the planetary eccentricities, all of which are consistent with zero. The difference between the number of planets found in Praesepe and Hyades (8 planets) and a similar dataset for Pleiades (0 planets, ~125 Myr) suggests a trend with age, but may be due to incompleteness of current search pipelines for younger, faster-rotating stars. We see increasing evidence that some planets continue to lose atmosphere past 800 Myr, as now two planets at this age have radii significantly larger than their older counterparts from Kepler.

Journal ArticleDOI
TL;DR: In this article, the authors used a dual-pronged modeling approach of self-consistent and retrieval models to analyze the Spitzer thermal emission photometry and Hubble WFC3 transmission spectrum.
Abstract: The Neptune-mass GJ 436b is one of the most studied transiting exoplanets with repeated measurements of its thermal emission and transmission spectra. We build on previous studies to answer outstanding questions about this planet, including its potentially high metallicity and tidal heating of its interior. We present new observations of GJ 436b's thermal emission at 3.6 and 4.5 μm, which reduce uncertainties in estimates of GJ 436b's flux at those wavelengths and demonstrate consistency between Spitzer observations spanning more than 7 yr. We analyze the Spitzer thermal emission photometry and Hubble WFC3 transmission spectrum. We use a dual-pronged modeling approach of both self-consistent and retrieval models. We vary the metallicity, intrinsic luminosity from tidal heating, disequilibrium chemistry, and heat redistribution. We also study clouds and photochemical hazes, but do not find strong evidence for either. The self-consistent and retrieval models combine to suggest that GJ 436b has a high atmospheric metallicity, with best fits at or above several hundred times solar metallicity, tidal heating warming its interior with best-fit intrinsic effective temperatures around 300–350 K, and disequilibrium chemistry. High metal enrichments (>600× solar) occur from the accretion of rocky, rather than icy, material. Assuming the interior temperature T int ~ 300–350 K, we find a dissipation factor Q' ~ 2 × 10^5–10^6, larger than Neptune's Q', implying a long tidal circularization timescale for the orbit. We suggest that Neptune-mass planets may be more diverse than imagined, with metal enhancements spanning several orders of magnitude, to perhaps over 1000× solar metallicity. High-fidelity observations with instruments like the James Webb Space Telescope will be critical for characterizing this diversity.

Journal ArticleDOI
TL;DR: The results of in-orbit calibrations of the UVIT are presented in this article, along with the results of the in-space calibration of the UAV in the presence of the ASTROSAT payload.
Abstract: The Ultra-Violet Imaging Telescope (UVIT) is one of the payloads in ASTROSAT, the first Indian Space Observatory. The UVIT instrument has two 375 mm telescopes: one for the far-ultraviolet (FUV) channel (1300–1800 A), and the other for the near-ultraviolet (NUV) channel (2000–3000 A) and the visible (VIS) channel (3200–5500 A). UVIT is primarily designed for simultaneous imaging in the two ultraviolet channels with spatial resolution better than 18, along with provisions for slit-less spectroscopy in the NUV and FUV channels. The results of in-orbit calibrations of UVIT are presented in this paper.

Journal ArticleDOI
TL;DR: In this article, the Carnegie Supernova Project (CSP-I) near-infrared photometry of 134 supernovae (SNe) with probable white dwarf progenitors was presented.
Abstract: We present final natural-system optical (ugriBV) and near-infrared (YJH) photometry of 134 supernovae (SNe) with probable white dwarf progenitors that were observed in 2004–2009 as part of the first stage of the Carnegie Supernova Project (CSP-I). The sample consists of 123 Type Ia SNe, 5 Type Iax SNe, 2 super-Chandrasekhar SN candidates, 2 Type Ia SNe interacting with circumstellar matter, and 2 SN 2006bt-like events. The redshifts of the objects range from z = 0.0037 to 0.0835; the median redshift is 0.0241. For 120 (90%) of these SNe, near-infrared photometry was obtained. Average optical extinction coefficients and color terms are derived and demonstrated to be stable during the five CSP-I observing campaigns. Measurements of the CSP-I near-infrared bandpasses are also described, and near-infrared color terms are estimated through synthetic photometry of stellar atmosphere models. Optical and near-infrared magnitudes of local sequences of tertiary standard stars for each supernova are given, and a new calibration of Y-band magnitudes of the Persson et al. standards in the CSP-I natural system is presented.

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a method to detect exoplanets using the ESI program for GPI related to NASA's Exoplanets Research Program (XRP) and NExSS (NExSS).
Abstract: NSF [AST1411868, AST-1518332, DGE-1311230]; NASA [NNX14AJ80G]; Fonds de Recherche du Quebec; NASA Exoplanets Research Program (XRP) [NNX16AD44G]; JPL's ESI program for GPIrelated; NASA's Science Mission Directorate; NExSS [NNX15AD95G]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]

Journal ArticleDOI
TL;DR: In this paper, the authors presented new transit and occultation times for the hot Jupiter WASP-12b, which are compatible with a constant period derivative: ms yr−1 and.
Abstract: We present new transit and occultation times for the hot Jupiter WASP-12b. The data are compatible with a constant period derivative: ms yr−1 and . However, it is difficult to tell whether we have observed orbital decay or a portion of a 14-year apsidal precession cycle. If interpreted as decay, the star's tidal quality parameter is about . If interpreted as precession, the planet's Love number is 0.44 ± 0.10. Orbital decay appears to be the more parsimonious model: it is favored by despite having two fewer free parameters than the precession model. The decay model implies that WASP-12 was discovered within the final ~0.2% of its existence, which is an unlikely coincidence but harmonizes with independent evidence that the planet is nearing disruption. Precession does not invoke any temporal coincidence, but it does require some mechanism to maintain an eccentricity of in the face of rapid tidal circularization. To distinguish unequivocally between decay and precession will probably require a few more years of monitoring. Particularly helpful will be occultation timing in 2019 and thereafter.

Journal ArticleDOI
TL;DR: In this article, the amplitude of a warm Neptune's spectral features in transmission correlates with either its equilibrium temperature (T_eq) or its bulk H/He mass fraction (f_HHe) in addition to the standard kT/mg scaling.
Abstract: Precise atmospheric observations have been made for a growing sample of warm Neptunes. Here we investigate the correlations between these observations and a large number of system parameters to show that, at 95% confidence, the amplitude of a warm Neptune's spectral features in transmission correlates with either its equilibrium temperature (T_eq) or its bulk H/He mass fraction (f_HHe) --- in addition to the standard kT/mg scaling. These correlations could indicate either more optically-thick, photochemically-produced hazes at lower T_eq and/or higher-metallicity atmospheres for planets with smaller radii and lower f_HHe. %Since hazes must exist in some of these planets, we favor the former explanation. We derive an analytic relation to estimate the observing time needed with JWST/NIRISS to confidently distinguish a nominal gas giant's transmission spectrum from a flat line. Using this tool, we show that these possible atmospheric trends could reduce the number of expected TESS planets accessible to JWST spectroscopy by up to a factor of eight. Additional observations of a larger sample of planets are required to confirm these trends in atmospheric properties as a function of planet or system quantities. If these trends can be confidently identified, the community will be well-positioned to prioritize new targets for atmospheric study and eventually break the complex degeneracies between atmospheric chemistry, composition, and cloud properties.

Journal ArticleDOI
TL;DR: In this paper, a template fitting technique was used to identify RR Lyrae stars in the PanSTARRS1 (PS1) 3π survey, and the authors obtained accurate period estimates, precise to 2 s in >80% of cases.
Abstract: RR Lyrae stars may be the best practical tracers of Galactic halo (sub-)structure and kinematics. The PanSTARRS1 (PS1) 3π survey offers multi-band, multi-epoch, precise photometry across much of the sky, but a robust identification of RR Lyrae stars in this data set poses a challenge, given PS1's sparse, asynchronous multi-band light curves (≾12 epochs in each of five bands, taken over a 4.5 year period). We present a novel template fitting technique that uses well-defined and physically motivated multi-band light curves of RR Lyrae stars, and demonstrate that we get accurate period estimates, precise to 2 s in >80% of cases. We augment these light-curve fits with other features from photometric time-series and provide them to progressively more detailed machine-learned classification models. From these models, we are able to select the widest (three-fourths of the sky) and deepest (reaching 120 kpc) sample of RR Lyrae stars to date. The PS1 sample of ~45,000 RRab stars is pure (90%) and complete (80% at 80 kpc) at high galactic latitudes. It also provides distances that are precise to 3%, measured with newly derived period–luminosity relations for optical/near-infrared PS1 bands. With the addition of proper motions from Gaia and radial velocity measurements from multi-object spectroscopic surveys, we expect the PS1 sample of RR Lyrae stars to become the premier source for studying the structure, kinematics, and the gravitational potential of the Galactic halo. The techniques presented in this study should translate well to other sparse, multi-band data sets, such as those produced by the Dark Energy Survey and the upcoming Large Synoptic Survey Telescope Galactic plane sub-survey.