scispace - formally typeset
Search or ask a question
Institution

University of Nice Sophia Antipolis

EducationNice, France
About: University of Nice Sophia Antipolis is a education organization based out in Nice, France. It is known for research contribution in the topics: Population & Stars. The organization has 10291 authors who have published 19964 publications receiving 680762 citations. The organization is also known as: UNS & University of Nice-Sophia Antipolis.


Papers
More filters
Journal ArticleDOI
TL;DR: This review aims to summarize recent studies highlighting the involvement of ROS/RNS, as well as the low molecular weight thiols, glutathione and homoglutathione, during the symbiosis between rhizobia and leguminous plants.
Abstract: Several reactive oxygen and nitrogen species (ROS/RNS) are continuously produced in plants as by-products of aerobic metabolism or in response to stresses. Depending on the nature of the ROS and RNS, some of them are highly toxic and rapidly detoxified by various cellular enzymatic and non-enzymatic mechanisms. Whereas plants have many mechanisms with which to combat increased ROS/RNS levels produced during stress conditions, under other circumstances plants appear to generate ROS/RNS as signalling molecules to control various processes encompassing the whole lifespan of the plant such as normal growth and development stages. This review aims to summarize recent studies highlighting the involvement of ROS/RNS, as well as the low molecular weight thiols, glutathione and homoglutathione, during the symbiosis between rhizobia and leguminous plants. This compatible interaction initiated by a molecular dialogue between the plant and bacterial partners, leads to the formation of a novel root organ capable of fixing atmospheric nitrogen under nitrogen-limiting conditions. On the one hand, ROS/RNS detection during the symbiotic process highlights the similarity of the early response to infection by pathogenic and symbiotic bacteria, addressing the question as to which mechanism rhizobia use to counteract the plant defence response. Moreover, there is increasing evidence that ROS are needed to establish the symbiosis fully. On the other hand, GSH synthesis appears to be essential for proper development of the root nodules during the symbiotic interaction. Elucidating the mechanisms that control ROS/RNS signalling during symbiosis could therefore contribute in defining a powerful strategy to enhance the efficiency of the symbiotic interaction.

197 citations

Journal ArticleDOI
TL;DR: A potential link observed in vivo between an increase in fatty acid supply induced by high-fat or high-carbohydrate diets and the hyperplastic development of adipose tissue is provided.

197 citations

Journal ArticleDOI
TL;DR: This study illustrates how the failure to recognize boundaries of evolutionary‐relevant unit leads to heavily biased estimates of connectivity, and reviews the conceptual framework within which species delimitation can be formalized as falsifiable hypotheses and how connectivity studies can feed integrative taxonomic work and vice versa.
Abstract: Connectivity among populations determines the dynamics and evolution of populations, and its assessment is essential in ecology in general and in conservation biology in particular. The robust basis of any ecological study is the accurate delimitation of evolutionary units, such as populations, metapopulations and species. Yet a disconnect still persists between the work of taxonomists describing species as working hypotheses and the use of species delimitation by molecular ecologists interested in describing patterns of gene flow. This problem is particularly acute in the marine environment where the inventory of biodiversity is relatively delayed, while for the past two decades, molecular studies have shown a high prevalence of cryptic species. In this study, we illustrate, based on marine case studies, how the failure to recognize boundaries of evolutionary-relevant unit leads to heavily biased estimates of connectivity. We review the conceptual framework within which species delimitation can be formalized as falsifiable hypotheses and show how connectivity studies can feed integrative taxonomic work and vice versa. Finally, we suggest strategies for spatial, temporal and phylogenetic sampling to reduce the probability of inadequately delimiting evolutionary units when engaging in connectivity studies.

197 citations

Journal ArticleDOI
TL;DR: The phylogenetic diversity of prokaryotic communities exposed to arid conditions in the hot desert of Tataouine (south Tunisia) was estimated with a combination of a culture and - molecular-based analysis, revealing the presence of species related to Bacteria and Archaea.
Abstract: The phylogenetic diversity of prokaryotic communities exposed to arid conditions in the hot desert of Tataouine (south Tunisia) was estimated with a combination of a culture and – molecular-based analysis. Thirty-one isolates, representative of each dominant morphotypes, were affiliated to Actinobacteria , Firmicutes , Proteobacteria and the CFB group while none related to Archaea. Analysis of 16S rRNA gene libraries revealed the presence of species related to Bacteria and Archaea . Sequences related to Archaea were all affiliated to the non-thermophilic Crenarchaeota subgroup. Bacterial sequences were dominated by Proteobacteria , Actinobacteria and Acidobacteria ; a few sequences were distributed among eight others phyla, including Thermus/Deinococcus relatives. A correlation between tolerance to desiccation and to radiation has been demonstrated for the radiotolerant bacteria Deinococcus radiodurans. Because bacteria living in the hot desert of Tataouine are one way or another tolerant to desiccation, we investigate whether they could also be tolerant to radiation. Exposition of soil samples to intense gamma radiation yields Bacillus , Thermus/Deinococcus and αα - Proteobacteria relatives. Four of these strains correspond to radiotolerant species as revealed by evaluation of the resistance levels of the individual cultures. A detailed analysis of the resistance levels for two Thermus/ Deinococcus and two αα - Proteobacteria relatives revealed that they correspond to new radiotolerant species.

197 citations

Journal ArticleDOI
TL;DR: This study illustrates that the current understanding of the ecological complexity of protist communities, and of the global species richness and genome diversity of protists, is severely limited.
Abstract: Recent advances in sequencing strategies make possible unprecedented depth and scale of sampling for molecular detection of microbial diversity. Two major paradigm-shifting discoveries include the detection of bacterial diversity that is one to two orders of magnitude greater than previous estimates, and the discovery of an exciting 'rare biosphere' of molecular signatures ('species') of poorly understood ecological significance. We applied a high-throughput parallel tag sequencing (454 sequencing) protocol adopted for eukaryotes to investigate protistan community complexity in two contrasting anoxic marine ecosystems (Framvaren Fjord, Norway; Cariaco deep-sea basin, Venezuela). Both sampling sites have previously been scrutinized for protistan diversity by traditional clone library construction and Sanger sequencing. By comparing these clone library data with 454 amplicon library data, we assess the efficiency of high-throughput tag sequencing strategies. We here present a novel, highly conservative bioinformatic analysis pipeline for the processing of large tag sequence data sets. The analyses of ca. 250,000 sequence reads revealed that the number of detected Operational Taxonomic Units (OTUs) far exceeded previous richness estimates from the same sites based on clone libraries and Sanger sequencing. More than 90% of this diversity was represented by OTUs with less than 10 sequence tags. We detected a substantial number of taxonomic groups like Apusozoa, Chrysomerophytes, Centroheliozoa, Eustigmatophytes, hyphochytriomycetes, Ichthyosporea, Oikomonads, Phaeothamniophytes, and rhodophytes which remained undetected by previous clone library-based diversity surveys of the sampling sites. The most important innovations in our newly developed bioinformatics pipeline employ (i) BLASTN with query parameters adjusted for highly variable domains and a complete database of public ribosomal RNA (rRNA) gene sequences for taxonomic assignments of tags; (ii) a clustering of tags at k differences (Levenshtein distance) with a newly developed algorithm enabling very fast OTU clustering for large tag sequence data sets; and (iii) a novel parsing procedure to combine the data from individual analyses. Our data highlight the magnitude of the under-sampled 'protistan gap' in the eukaryotic tree of life. This study illustrates that our current understanding of the ecological complexity of protist communities, and of the global species richness and genome diversity of protists, is severely limited. Even though 454 pyrosequencing is not a panacea, it allows for more comprehensive insights into the diversity of protistan communities, and combined with appropriate statistical tools, enables improved ecological interpretations of the data and projections of global diversity.

197 citations


Authors

Showing all 10355 results

NameH-indexPapersCitations
Robert J. Lefkowitz214860147995
Johan Auwerx15865395779
Kenneth M. Yamada13944672136
Jean-Luc Starck13365776224
Christophe Benoist13247063181
Jacques Pouysségur12541254656
Michel Lazdunski12556254650
E. A. De Wolf124133383171
Leon O. Chua12282471612
Tomasz Bulik12169886211
James G. Krueger12050546275
Austin Smith11130163156
Peter Fritschel10842772722
Didier Sornette104129544157
François Bondu10044069284
Network Information
Related Institutions (5)
University of Paris
174.1K papers, 5M citations

96% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

96% related

École Normale Supérieure
99.4K papers, 3M citations

94% related

Sapienza University of Rome
155.4K papers, 4.3M citations

93% related

University of Padua
114.8K papers, 3.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202310
2022139
2021203
2020264
2019441
2018536