scispace - formally typeset
Search or ask a question
Institution

University of Nice Sophia Antipolis

EducationNice, France
About: University of Nice Sophia Antipolis is a education organization based out in Nice, France. It is known for research contribution in the topics: Population & Stars. The organization has 10291 authors who have published 19964 publications receiving 680762 citations. The organization is also known as: UNS & University of Nice-Sophia Antipolis.


Papers
More filters
Journal ArticleDOI
TL;DR: This work reviews the expression, regulation and function of the HIF prolyl hydroxylases or pro-hydroxylase domain proteins, which are genuine oxygen sensors.
Abstract: Metazoans rapidly respond to changes in oxygen availability by regulating gene expression. The transcription factor hypoxia-inducible-factor (HIF), which controls the expression of several genes, ‘senses' the oxygen concentration indirectly through the hydroxylation of two proline residues that earmarks the HIF-α subunits for proteasomal degradation. We review the expression, regulation and function of the HIF prolyl hydroxylases or prolyl hydroxylases domain proteins, which are genuine oxygen sensors.

200 citations

Journal ArticleDOI
TL;DR: In this review, recent advances in understanding of both the regulation and functions of RNA localization during animal development are described and discussed.
Abstract: Intracellular targeting of mRNAs has long been recognized as a means to produce proteins locally, but has only recently emerged as a prevalent mechanism used by a wide variety of polarized cell types. Localization of mRNA molecules within the cytoplasm provides a basis for cell polarization, thus underlying developmental processes such as asymmetric cell division, cell migration, neuronal maturation and embryonic patterning. In this review, we describe and discuss recent advances in our understanding of both the regulation and functions of RNA localization during animal development.

199 citations

Journal ArticleDOI
TL;DR: Functional and clinical data of a broadly important role for SOX9 in tumorigenesis are presented and Mechanistically, Sox9 directly binds and activates the promoter of the polycomb Bmi1, whose upregulation represses the tumor suppressor Ink4a/Arf locus are found.
Abstract: SOX9 [sex-determining region Y (SRY)-box 9 protein], a high mobility group box transcription factor, plays critical roles during embryogenesis and its activity is required for development, differentiation, and lineage commitment in various tissues including the intestinal epithelium. Here, we present functional and clinical data of a broadly important role for SOX9 in tumorigenesis. SOX9 was overexpressed in a wide range of human cancers, where its expression correlated with malignant character and progression. Gain of SOX9 copy number is detected in some primary colorectal cancers. SOX9 exhibited several pro-oncogenic properties, including the ability to promote proliferation, inhibit senescence, and collaborate with other oncogenes in neoplastic transformation. In primary mouse embryo fibroblasts and colorectal cancer cells, SOX9 expression facilitated tumor growth and progression whereas its inactivation reduced tumorigenicity. Mechanistically, we have found that Sox9 directly binds and activates the promoter of the polycomb Bmi1, whose upregulation represses the tumor suppressor Ink4a/Arf locus. In agreement with this, human colorectal cancers showed a positive correlation between expression levels of SOX9 and BMI1 and a negative correlation between SOX9 and ARF in clinical samples. Taken together, our findings provide direct mechanistic evidence of the involvement of SOX9 in neoplastic pathobiology, particularly, in colorectal cancer.

199 citations

Journal ArticleDOI
28 Oct 2011-Science
TL;DR: A spacecraft flyby of an asteroid reveals a high-density body that is more like a planetesimal than a rubble pile, which contrasts with smaller asteroids visited by previous spacecraft, which are probably shattered bodies, fragments of larger parents, or reaccumulated rubble piles.
Abstract: Images obtained by the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) cameras onboard the Rosetta spacecraft reveal that asteroid 21 Lutetia has a complex geology and one of the highest asteroid densities measured so far, 3.4 ± 0.3 grams per cubic centimeter. The north pole region is covered by a thick layer of regolith, which is seen to flow in major landslides associated with albedo variation. Its geologically complex surface, ancient surface age, and high density suggest that Lutetia is most likely a primordial planetesimal. This contrasts with smaller asteroids visited by previous spacecraft, which are probably shattered bodies, fragments of larger parents, or reaccumulated rubble piles.

199 citations

Journal ArticleDOI
06 Apr 2006-Nature
TL;DR: Myo31DF is a dextral gene with actin-based motor activity controlling situs choice with interacts and colocalizes with β-catenin, suggesting that situs inversus genes can direct left–right development through the adherens junction.
Abstract: From flies to humans, the left and right side of the body plan differs. Exactly how symmetry is broken in the early embryo is a mystery. But now two groups working independently report a genetic defect in the fly that may help uncover the mechanism. Both groups studied a mutant with reversed looping of the viscera, and discovered that the mutation lies in an unconventional myosin. Myosin directs right-handed looping and represses the default left-handed fate. This discovery now links actin-based molecular motors and the actin cytoskeleton to left–right patterning in vertebrates. One of a pair of papers separately showing that an unconventional myosin directs handedness of the viscera of Drosophila. Breaking left–right symmetry in Bilateria embryos is a major event in body plan organization that leads to polarized adult morphology, directional organ looping, and heart and brain function1,2,3,4. However, the molecular nature of the determinant(s) responsible for the invariant orientation of the left–right axis (situs choice) remains largely unknown. Mutations producing a complete reversal of left–right asymmetry (situs inversus) are instrumental for identifying mechanisms controlling handedness, yet only one such mutation has been found in mice (inversin)5 and snails6,7. Here we identify the conserved type ID unconventional myosin 31DF gene (Myo31DF) as a unique situs inversus locus in Drosophila. Myo31DF mutations reverse the dextral looping of genitalia, a prominent left–right marker in adult flies. Genetic mosaic analysis pinpoints the A8 segment of the genital disc as a left–right organizer and reveals an anterior–posterior compartmentalization of Myo31DF function that directs dextral development and represses a sinistral default state. As expected of a determinant, Myo31DF has a trigger-like function and is expressed symmetrically in the organizer, and its symmetrical overexpression does not impair left–right asymmetry. Thus Myo31DF is a dextral gene with actin-based motor activity controlling situs choice. Like mouse inversin8, Myo31DF interacts and colocalizes with β-catenin, suggesting that situs inversus genes can direct left–right development through the adherens junction.

199 citations


Authors

Showing all 10355 results

NameH-indexPapersCitations
Robert J. Lefkowitz214860147995
Johan Auwerx15865395779
Kenneth M. Yamada13944672136
Jean-Luc Starck13365776224
Christophe Benoist13247063181
Jacques Pouysségur12541254656
Michel Lazdunski12556254650
E. A. De Wolf124133383171
Leon O. Chua12282471612
Tomasz Bulik12169886211
James G. Krueger12050546275
Austin Smith11130163156
Peter Fritschel10842772722
Didier Sornette104129544157
François Bondu10044069284
Network Information
Related Institutions (5)
University of Paris
174.1K papers, 5M citations

96% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

96% related

École Normale Supérieure
99.4K papers, 3M citations

94% related

Sapienza University of Rome
155.4K papers, 4.3M citations

93% related

University of Padua
114.8K papers, 3.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202310
2022139
2021203
2020264
2019441
2018536