scispace - formally typeset
Search or ask a question
Institution

University of Nice Sophia Antipolis

EducationNice, France
About: University of Nice Sophia Antipolis is a education organization based out in Nice, France. It is known for research contribution in the topics: Population & Stars. The organization has 10291 authors who have published 19964 publications receiving 680762 citations. The organization is also known as: UNS & University of Nice-Sophia Antipolis.


Papers
More filters
Journal ArticleDOI
TL;DR: A simple criterion based on the Einstein relation for determining whether diffusion in systems governed by a generalized Langevin equation with long-range memory is normal, superdiffusive, or subdiffusive is presented.
Abstract: We present a simple criterion based on the Einstein relation for determining whether diffusion in systems governed by a generalized Langevin equation with long-range memory is normal, superdiffusive, or subdiffusive. We support our analysis with numerical simulations.

167 citations

Journal ArticleDOI
TL;DR: A novel phenomenological scenario dominated by the splitting of the turbulent cascade emerges both from the theoretical analysis of passive scalar turbulence and from direct numerical simulations of Navier-Stokes turbulence.
Abstract: We investigate the behavior of turbulent systems in geometries with one compactified dimension. A novel phenomenological scenario dominated by the splitting of the turbulent cascade emerges both from the theoretical analysis of passive scalar turbulence and from direct numerical simulations of Navier-Stokes turbulence.

167 citations

Journal ArticleDOI
TL;DR: The main advances in the field of CTC and ctDNA detection in NSCLC patients are described and the main advantages and disadvantages of these two approaches are compared.
Abstract: The practice of “liquid biopsy” as a diagnostic, prognostic and theranostic tool in non-small cell lung cancer (NSCLC) patients is an appealing approach, at least in theory, since it is noninvasive and easily repeated. In particular, this approach allows patient monitoring during treatment, as well as the detection of different genomic alterations that are potentially accessible to targeted therapy or are associated with treatment resistance. However, clinical routine practice is slow to adopt the liquid biopsy. Several reasons may explain this: (I) the vast number of methods described for potential detection of circulating biomarkers, without a consensus on the ideal technical approach; (II) the multiplicity of potential biomarkers for evaluation, in particular, circulating tumor cells (CTCs) vs. circulating tumor DNA (ctDNA); (III) the difficulty in controlling the pre-analytical phase to obtain robust and reproducible results; (IV) the present cost of the currently available techniques, which limits accessibility to patients; (V) the turnaround time required to obtain results that are incompatible with the urgent need for delivery of treatment. The purpose of this review is to describe the main advances in the field of CTC and ctDNA detection in NSCLC patients and to compare the main advantages and disadvantages of these two approaches.

167 citations

Journal ArticleDOI
TL;DR: In this paper, a method for the determination of stellar abundance ratios using low-resolution (R = 2000) stellar spectra from the Sloan Digital Sky Survey (SDSS) and its Galactic sub-survey, the Sloan Extension for Galactic Understanding and Exploration (SEGUE) was described.
Abstract: We describe a method for the determination of stellar [C/Fe] abundance ratios using low-resolution (R = 2000) stellar spectra from the Sloan Digital Sky Survey (SDSS) and its Galactic sub-survey, the Sloan Extension for Galactic Understanding and Exploration (SEGUE). By means of a star-by-star comparison with a set of SDSS/SEGUE spectra with available estimates of [C/Fe] based on published high-resolution analyses, we demonstrate that we can measure [C/Fe] from SDSS/SEGUE spectra with S/N ≥ 15 A{sup –1} to a precision better than 0.35 dex for stars with atmospheric parameters in the range T {sub eff} = [4400, 6700] K, log g = [1.0, 5.0], [Fe/H] = [–4.0, +0.5], and [C/Fe] = [–0.25, +3.5]. Using the measured carbon-to-iron abundance ratios obtained by this technique, we derive the frequency of carbon-enhanced stars ([C/Fe] ≥ +0.7) as a function of [Fe/H], for both the SDSS/SEGUE stars and other samples from the literature. We find that the differential frequency slowly rises from almost zero to about 14% at [Fe/H] ∼ –2.4, followed by a sudden increase, by about a factor of three, to 39% from [Fe/H] ∼ –2.4 to [Fe/H] ∼ –3.7. Although the number of stars known with [Fe/H] < –4.0 remains small,more » the frequency of carbon-enhanced metal-poor (CEMP) stars below this value is around 75%. We also examine how the cumulative frequency of CEMP stars varies across different luminosity classes. The giant sample exhibits a cumulative CEMP frequency of 32% for [Fe/H] ≤ –2.5, 31% for [Fe/H] ≤ –3.0, and 33% for [Fe/H] ≤ –3.5; a roughly constant value. For the main-sequence turnoff stars, we obtain a lower cumulative CEMP frequency, around 10% for [Fe/H] ≤ –2.5, presumably due to the difficulty of identifying CEMP stars among warmer turnoff stars with weak CH G-bands. The dwarf population displays a large change in the cumulative frequency for CEMP stars below [Fe/H] = –2.5, jumping from 15% for [Fe/H] ≤ –2.5 to about 75% for [Fe/H] ≤ –3.0. When we impose a restriction with respect to distance from the Galactic mid-plane (|Z| < 5 kpc), the frequency of the CEMP giants does not increase at low metallicity ([Fe/H] < –2.5), but rather decreases due to the dilution of C-rich material in stars that have undergone mixing with CNO-processed material from their interiors. The frequency of CEMP stars near the main-sequence turnoff, which are not expected to have experienced mixing, increases for [Fe/H] ≤ –3.0. The general rise in the global CEMP frequency at low metallicity is likely due to the transition from the inner-halo to the outer-halo stellar populations with declining metallicity and increasing distance from the plane.« less

166 citations

Book ChapterDOI
01 Jan 2003
TL;DR: In this article, the generalized geodesics and the Monge-Kantorovich theory are revisited as a subset of generalized surface theory and a relativistic heat equation is discussed.
Abstract: 1 Abstract 2 Generalized geodesics and the Monge-Kantorovich theory 2.1 Generalized geodesics 2.2 Extension to probability measures 2.3 A decomposition result 2.4 Relativistic MKT 2.5 A relativistic heat equation 2.6 Laplace’s equation and Moser’s lemma revisited 3 Generalized Harmonic functions 3.1 Classical harmonic functions 3.2 Open problems 4 Multiphasic MKT 5 Generalized extremal surfaces 5.1 MKT revisited as a subset of generalized surface theory 5.2 Degenerate quadratic cost functions 6 Generalized extremal surfaces in \(\mathbb{R}^5\) and Electrodynamics 6.1 Recovery of the Maxwell equations 6.2 Derivation of a set of nonlinear Maxwell equations 6.3 An Euler-Maxwell-type system References

166 citations


Authors

Showing all 10355 results

NameH-indexPapersCitations
Robert J. Lefkowitz214860147995
Johan Auwerx15865395779
Kenneth M. Yamada13944672136
Jean-Luc Starck13365776224
Christophe Benoist13247063181
Jacques Pouysségur12541254656
Michel Lazdunski12556254650
E. A. De Wolf124133383171
Leon O. Chua12282471612
Tomasz Bulik12169886211
James G. Krueger12050546275
Austin Smith11130163156
Peter Fritschel10842772722
Didier Sornette104129544157
François Bondu10044069284
Network Information
Related Institutions (5)
University of Paris
174.1K papers, 5M citations

96% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

96% related

École Normale Supérieure
99.4K papers, 3M citations

94% related

Sapienza University of Rome
155.4K papers, 4.3M citations

93% related

University of Padua
114.8K papers, 3.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202310
2022139
2021203
2020264
2019441
2018536