scispace - formally typeset
Search or ask a question

Showing papers in "Advances in Parasitology in 2009"


Book ChapterDOI
TL;DR: In this paper, the origins and geographical spread of F. gigantica and F. hepatica were investigated by means of complete sequences of ribosomal deoxyribonucleic acid (rDNA) internal transcribed spacer (ITS)−2 and ITS−1 and mitochondrial cox1 and nad1 from areas with only one fasciolid species.
Abstract: Fascioliasis, caused by liver fluke species of the genus Fasciola, has always been well recognized because of its high veterinary impact but it has been among the most neglected diseases for decades with regard to human infection. However, the increasing importance of human fascioliasis worldwide has re‐launched interest in fascioliasis. From the 1990s, many new concepts have been developed regarding human fascioliasis and these have furnished a new baseline for the human disease that is very different to a simple extrapolation from fascioliasis in livestock. Studies have shown that human fascioliasis presents marked heterogeneity, including different epidemiological situations and transmission patterns in different endemic areas. This heterogeneity, added to the present emergence/re‐emergence of the disease both in humans and animals in many regions, confirms a worrying global scenario. The huge negative impact of fascioliasis on human communities demands rapid action. When analyzing how better to define control measures for endemic areas differing at such a level, it would be useful to have genetic markers that could distinguish each type of transmission pattern and epidemiological situation. Accordingly, this chapter covers aspects of aetiology, geographical distribution, epidemiology, transmission and control in order to obtain a solid baseline for the interpretation of future results. The origins and geographical spread of F. hepatica and F. gigantica in both the ruminant pre‐domestication times and the livestock post‐domestication period are analyzed. Paleontological, archaeological and historical records, as well as genetic data on recent dispersal of livestock species, are taken into account to establish an evolutionary framework for the two fasciolids across all continents. Emphasis is given to the distributional overlap of both species and the roles of transportation, transhumance and trade in the different overlap situations. Areas with only one Fasciola spp. are distinguished from local and zonal overlaps in areas where both fasciolids co‐exist. Genetic techniques applied to liver flukes in recent years that are useful to elucidate the genetic characteristics of the two fasciolids are reviewed. The intra‐specific and inter‐specific variabilities of ‘pure’ F. hepatica and ‘pure’ F. gigantica were ascertained by means of complete sequences of ribosomal deoxyribonucleic acid (rDNA) internal transcribed spacer (ITS)‐2 and ITS‐1 and mitochondrial deoxyribonucleic acid (mtDNA) cox1 and nad1 from areas with only one fasciolid species. Fasciolid sequences of the same markers scattered in the literature are reviewed. The definitive haplotypes established appear to fit the proposed global evolutionary scenario. Problems posed by fasciolid cross‐breeding, introgression and hybridization in overlap areas are analyzed. Nuclear rDNA appears to correlate with adult fluke characteristics and fasciolid/lymnaeid specificity, whereas mtDNA does not. However, flukes sometimes appear so intermediate that they cannot be ascribed to either F. hepatica‐like or F. gigantica‐like forms and snail specificity may be opposite to the one deduced from the adult morphotype. The phenotypic characteristics of adults and eggs of ‘pure’ F. hepatica and F. gigantica, as well as of intermediate forms in overlap areas, are compared, with emphasis on the definitive host influence on egg size in humans. Knowledge is sufficient to support F. hepatica and F. gigantica as two valid species, which recently diverged by adaptation to different pecoran and lymnaeid hosts in areas with differing environmental characteristics. Their phenotypic differences and ancient pre‐domestication origins involve a broad geographical area that largely exceeds the typical, more local scenarios known for sub‐species units. Phenomena such as abnormal ploidy and aspermic parthenogenesis in hybrids suggest that their separate evolution in pre‐domestication times allowed them to achieve almost total genetic isolation. Recent sequencing results suggest that present assumptions on fasciolid‐lymnaeid specificity might be wrong. The crucial role of lymnaeids in fascioliasis transmission, epidemiology and control was the reason for launching a worldwide lymnaeid molecular characterization initiative. This initiative has already furnished useful results on several continents. A standardized methodology for fasciolids and lymnaeids is proposed herein in order that future work is undertaken on a comparable basis. A complete understanding of molecular epidemiology is expected to help greatly in designing global actions and local interventions for control of fascioliasis.

544 citations


Book ChapterDOI
TL;DR: This review looks at the fate of parasites during a biological invasion and at their impact on native and invasive hosts, and asks whether parasites can mediate invasion success.
Abstract: There is considerable current interest in the role that parasites can play in biological invasions. This review looks at the fate of parasites during a biological invasion and at their impact on native and invasive hosts, and asks whether parasites can mediate invasion success. An introduced species may lose its parasites as a result of the introduction and such release from its natural enemies may be an important factor determining invasion success. In addition, an introduced species may acquire parasites from its new environment or it may introduce novel parasites to hosts in the new range. As a result of local adaptation, parasites tend to have a differential effect on native versus invading hosts. The relative impact on the fitness of natives and invaders can be important for the outcome of an invasion and may, for example, reverse the pattern of competitive dominance seen in uninfected hosts. Parasites may mediate invasion success through their effect on host fitness and thus on host population growth and stability. Furthermore, by modifying host-host interactions (including competition and predation), parasites can be important factors that determine the success of an invasion and its impact on the recipient community.

202 citations


Book ChapterDOI
TL;DR: This review uses key examples to examine the proximate mechanisms by which parasites are known to control the behaviour of their hosts, and argues that parasite-manipulated behaviours could be the result of compromises between host and parasite strategies.
Abstract: Parasite-induced alteration of host behaviour is a widespread transmission strategy among pathogens. Understanding how it works is an exciting challenge from both a mechanistic and an evolutionary perspective. In this review, we use key examples to examine the proximate mechanisms by which parasites are known to control the behaviour of their hosts. Special attention is given to the recent developments of post-genomic tools, such as proteomics, for determining the genetic basis of parasitic manipulation. We then discuss two novel perspectives on host manipulation (mafia-like strategy and exploitation of host compensatory responses), arguing that parasite-manipulated behaviours could be the result of compromises between host and parasite strategies. Such compromises may occur when collaborating with the parasite is less costly for the host in terms of fitness than is resisting parasite-induced changes. Therefore, even when changes in host behaviour benefit the parasite, the host may still play some role in the switch in host behaviour. In other words, the host does not always become part of the parasite's extended phenotype. For example, parasites that alter host behaviour appear to induce widely disseminated changes in the hosts' central nervous system, as opposed to targeted attacks on specific neural circuits. In some host-parasite systems, the change in host behaviour appears to require the active participation of the host (e.g., via host immune-neural connections). Even when the change in host behaviour results in clear fitness benefits for the parasite, these behavioural changes may sometimes be produced by the host. Changes in host behaviour that decrease the fitness costs of infection could be selected for, even if these changes also benefit the parasite.

144 citations


Book ChapterDOI
TL;DR: The diversity and intensity of selective constraints acting on parasitoid life history traits, which vary geographically, are exposed and highlight the importance of considering both biotic and abiotic factors with their interactions to understand ecological and evolutionary dynamics of host-parasitoid associations.
Abstract: Parasitoids and their hosts are linked by intimate and harmful interactions that make them well suited to analyze fundamental ecological and evolutionary processes with regard to life histories evolution of parasitic association. Drosophila aspects of what parasitoid Hymenoptera have become model organisms to study aspects that cannot be investigated with other associations. These include the genetic bases of fitness traits variations, physiology and genetics of resistance/virulence, and coevolutionary dynamics leading to local adaptation. Recent research on evolutionary ecology of Drosophila parasitoids were performed mainly on species that thrive in fermenting fruits (genera Leptopilina and Asobara). Here, we review information and add original data regarding community ecology of these parasitoids, including species distribution, pattern of abundance and diversity, host range and the nature and intensity of species interactions. Biology and the evolution of life histories in response to habitat heterogeneity and possible local adaptations leading to specialization of these wasps are reported with special emphasis on species living in southern Europe. We expose the diversity and intensity of selective constraints acting on parasitoid life history traits, which vary geographically and highlight the importance of considering both biotic and abiotic factors with their interactions to understand ecological and evolutionary dynamics of host-parasitoid associations.

136 citations


Book ChapterDOI
TL;DR: Studies of the virulence factors injected by female wasps during oviposition that suppress the host response will likely facilitate identification of the cytotoxic molecules as well as the cell-signaling pathways that regulate their synthesis.
Abstract: The cellular innate immune response of several species of Drosophila terminates with the encasement of large foreign objects within melanotic capsules comprised of several layers of adhering blood cells or hemocytes. This reaction is manifested by various Drosophila hosts in response to infection by endoparasitic wasps (i.e., parasitoids). Creditable assessments of the factor(s) causing, or contributing to, parasite mortality have long been considered as cytotoxic elements certain molecules associated with enzyme-mediated melanogenesis. However, observations that warrant additional or alternative considerations are those documenting parasitoid survival despite melanotic encapsulation, and those where parasitoids are destroyed with no evidence of this host response. Recent studies of the production of some reactive intermediates of oxygen and nitrogen during infection provide a basis for proposing that these molecules constitute important components of the immune arsenal of Drosophila. Studies of the virulence factors injected by female wasps during oviposition that suppress the host response will likely facilitate identification of the cytotoxic molecules as well as the cell-signaling pathways that regulate their synthesis.

109 citations


Book ChapterDOI
TL;DR: Current techniques using recombinant antigens with a range of immunogenicities, high-throughput enzyme-linked immunosorbent assays (ELISA) and statistical analysis allow a more robust examination of how serological parameters can be used to evaluate factors affecting malaria transmission.
Abstract: Anti-malarial antibody responses represent an individual's history of exposure to the disease and, as age sero-conversion rates, reflect cumulative malaria exposure in a population As such these antibody responses are an alternate measure of malaria transmission intensity and have potential in evaluating changes in exposure This approach was used in the 1970s to evaluate malaria control and eradication attempts in a variety of different ecological settings These historical studies provided a wealth of information on how serological data might be used to interpret control measures However they were limited by a lack of standardized antigens and reproducible high-throughput assays Current techniques using recombinant antigens with a range of immunogenicities, high-throughput enzyme-linked immunosorbent assays (ELISA) and statistical analysis allow a more robust examination of how serological parameters can be used to evaluate factors affecting malaria transmission Here we present a review of the historical data and use it to assess the serological contribution to monitoring malaria elimination

89 citations


Book ChapterDOI
TL;DR: The present chapter summarizes the data on the biochemical and molecular features of the major trematode peptidases, and describes their role in trematodes biology and host-parasite interactions based on proteolysis (peptidolysis).
Abstract: Among human and veterinary parasitic diseases the trematodiases (e.g. schistosomiasis, fascioliasis) represent a problem of global importance with vast social, economic and public health impacts, especially in developing countries. Therefore, host-parasite (host-trematode) interactions represent a key topic in many research laboratories, and modern approaches and technologies allow us to study the molecular basis of these interactions. As a consequence, key molecules produced by trematodes in order to ensure parasite invasion and survival within a hosts can be characterized. Trematode peptidases certainly belong to such molecules; as they are indispensable biocatalysts in a number of basal biological processes in trematodes (e.g. tissue invasion/migration, nutrition, immune evasion or other host-parasite interactions). Schistosoma mansoni cercarial elastase (CE) (penetration enzyme), cathepsin B (CB) (mainly nutrition enzyme) and Fasciola hepatica cathepsin L (CL) (nutrition, immune evasion enzyme) are probably the most studied trematode peptidases with well-characterized critical functions. Due to the importance of peptidases in host-parasite interactions they are considered to be promising targets for the development of novel chemotherapeutic drugs and vaccines against a number of trematodiases, including schistosomiasis, fascioliasis, paragonimiasis and opisthorchiasis. The present chapter summarizes the data on the biochemical and molecular features of the major trematode peptidases, and describes their role in trematode biology and host-parasite interactions based on proteolysis (peptidolysis).

77 citations


Book ChapterDOI
TL;DR: The life cycle of Pasteuria penetrans is described with emphasis on the bacterium's potential as a biocontrol agent and similarities are drawn between the co-evolution of virulence in the Daphnia system and that of plant-parasitic nematodes.
Abstract: Pasteuria penetrans is an endospore‐forming bacterium, which is a hyperparasite of root‐knot nematodes Meloidogyne spp. that are economically important pests of a wide range of crops. The life cycle of the bacterium and nematode are described with emphasis on the bacterium's potential as a biocontrol agent. Two aspects that currently prohibit the commercial development of the bacterium as a biocontrol agent are the inability to culture it outside its host and its host specificity. Vegetative growth of the bacterium is possible in vitro ; however, getting the vegetative stages of the bacterium to enter sporogenesis has been problematic. Insights from genomic survey sequences regarding the role of cation concentration and the phosphorylation of Spo0F have proved useful in inducing vegetative bacteria to sporulate. Similarly, genomic data have also proved useful in understanding the attachment of endospores to the cuticle of infective nematode juveniles, and a Velcro‐like model of spore attachment is proposed that involves collagen‐like fibres on the surface of the endospore interacting with mucins on the nematode cuticle. Ecological studies of the interactions between Daphnia and Pasteuria ramosa are examined and similarities are drawn between the co‐evolution of virulence in the Daphnia system and that of plant‐parasitic nematodes.

74 citations


Book ChapterDOI
TL;DR: It is concluded that local adaptation of Onchocerca-Simulium complexes will influence the feasibility of eliminating the parasite reservoir in different foci, and influence upon the evolution of anthelmintic resistance.
Abstract: Parasite-vector interactions shape the population dynamics of vector-borne infections and contribute to observed epidemiological patterns. Also, parasites and their vectors may co-evolve, giving rise to locally adapted combinations or complexes with the potential to stabilise the infection. Here, we focus on Onchocerca-Simulium interactions with particular reference to the transmission dynamics of human onchocerciasis. A wide range of simuliid species may act as vectors of Onchocerca volvulus, each exerting their own influence over the local epidemiology and the feasibility of controlling/eliminating the infection. Firstly, current understanding of the processes involved in parasite acquisition by, and development within, different Simulium species in West Africa and Latin America will be reviewed. A description of how Onchocerca and Simulium exert reciprocal effects on each other's survival at various stages of the parasite's life cycle within the blackfly, and may have adapted to minimise deleterious effects on fitness and maximise transmission will be given. Second, we describe the interactions in terms of resultant (positive and negative) density-dependent processes that regulate parasite abundance, and discuss their incorporation into mathematical models that provide useful qualitative insight regarding transmission breakpoints. Finally, we examine the interactions' influence upon the evolution of anthelmintic resistance, and conclude that local adaptation of Onchocerca-Simulium complexes will influence the feasibility of eliminating the parasite reservoir in different foci.

60 citations


Book ChapterDOI
TL;DR: This chapter examines the significant literature on the biology of echinostomes, medically and veterinary-important parasitic flatworms that invade humans, domestic animals and wildlife and also parasitize in their larval stages numerous invertebrate and cold-blooded vertebrate hosts.
Abstract: This chapter examines the significant literature on the biology of echinostomes The members of the family Echinostomatidae are medically and veterinary-important parasitic flatworms that invade humans, domestic animals and wildlife and also parasitize in their larval stages numerous invertebrate and cold-blooded vertebrate hosts All echinostomes possess a complicated lifecycle expressed by: (i) alternation of seven generations known as the adult, egg, miracidium, sporocyst, redia, cercaria and metacercaria, and (ii) inclusion of three host categories known as the definitive host and first and second intermediate hosts Moreover, echinostomes have served as experimental models in parasitology at all levels of organization We discuss recent advances in several areas of the biological sciences that feature studies on echinostomes Initially, we consider aspects of the lifecycle, development and systematics of selected members of the Echinostomatidae We then highlight host-parasite interactions between echinostomes and their intermediate and definitive hosts with emphasis on the application of novel techniques to these topics

57 citations


Book ChapterDOI
TL;DR: Early indications suggest that the genes involved in the actual immune response against parasitoids are mostly different from the genesinvolved in the evolution of resistance, which can explain the existence of genetic variation.
Abstract: By their nature, parasitoids will exert a selection pressure on their hosts to evolve a mechanism through which to resist parasitoid attack. In turn, such a resistance mechanism will lead to parasitoids evolving counter-resistance. In this chapter, we present an overview of the research on the (co)evolutionary interaction between Drosophila and their parasitoids, with the main focus on the cellular immune response of D. melanogaster, and the counter-resistance mechanism of one of its main parasitoids, Asobara tabida. A key aspect of this interaction is the existence of genetic variation: in the field, host resistance and parasitoid counter-resistance vary, both between and within populations. Host resistance and parasitoid counter-resistance are costly, and both these costs turn out to be density dependent. These tradeoffs can explain the existence of genetic variation. We briefly touch upon behavioral aspects of the interaction and the parasites and pathogens that the parasitoids themselves suffer from. We end this chapter by considering the data coming from gene chip experiments: early indications suggest that the genes involved in the actual immune response against parasitoids are mostly different from the genes involved in the evolution of resistance.

Book ChapterDOI
TL;DR: In this article, the physiological and molecular aspects of Leptopilina boulardi interactions with two Drosophila host species, while most of the evolutionary hypotheses and models are presented in Chapter 11 of Dupas et al.
Abstract: Interactions between Drosophila hosts and parasitoid wasps are among the few examples in which occurrence of intraspecific variation of parasite success has been studied in natural populations. Such variations can originate from three categories of factors: environmental, host and parasitoid factors. Under controlled laboratory conditions, it is possible to focus on the two last categories, and, using specific reference lines, to analyze their respective importance. Parasitoid and host contributions to variations in parasite success have largely been studied in terms of evolutionary and mechanistic aspects in two Drosophila parasitoids, Asobara tabida and, in more details, in Leptopilina boulardi. This chapter focuses on the physiological and molecular aspects of L. boulardi interactions with two Drosophila host species, while most of the evolutionary hypotheses and models are presented in Chapter 11 of Dupas et al.

Book ChapterDOI
TL;DR: Molecular phylogenies of individual cancers should facilitate testing of the idea that pathogens are major initiators of oncogenesis for many if not most cancers, and that the traditional mutation-driven process becomes the dominant process after this initiation.
Abstract: For the past half‐century, the dominant paradigm of oncogenesis has been mutational changes that disregulate cellular control of proliferation Parasitic causes of cancer were first incorporated into this paradigm by suggesting mechanisms through which parasitism might increase mutational damage, such as generation of mutagenic compounds during immunological activity The growing recognition of the molecular mechanisms of pathogen‐induced oncogenesis and the difficulty of generating oncogenic mutations without first having large populations of dysregulated cells, however, suggests that pathogens, particularly viruses, are major initiators of oncogenesis for many if not most cancers, and that the traditional mutation‐driven process becomes the dominant process after this initiation Molecular phylogenies of individual cancers should facilitate testing of this idea and the identification of causal pathogens

Book ChapterDOI
Hilary Hurd1
TL;DR: It is concluded that evolutionary theories must be supported by empirical evidence gained from studying molecular, biochemical and physiological mechanisms underlying changes in host life-history traits, ideally using organisms that have evolved together and that are in their natural environment.
Abstract: Many hosts are able to tolerate infection by altering life-history traits that are traded-off one against another. Here the reproductive fitness of insect hosts and vectors is reviewed in the context of theories concerning evolutionary mechanisms driving such alterations. These include the concepts that changes in host reproductive fitness are by-products of infection, parasite manipulations, host adaptations, mafia-like strategies or host compensatory responses. Two models are examined in depth, a tapeworm/beetle association, Hymenolepis diminuta/Tenebrio molitor and malaria infections in anopheline mosquitoes. Parasite-induced impairment of vitellogenesis ultimately leads to a decrease in female reproductive success in both cases, though by different means. Evidence is put forwards for both a manipulator molecule of parasite origin and for host-initiated regulation. These models are backed by other examples in which mechanisms underlying fecundity reduction or fecundity compensation are explored. It is concluded that evolutionary theories must be supported by empirical evidence gained from studying molecular, biochemical and physiological mechanisms underlying changes in host life-history traits, ideally using organisms that have evolved together and that are in their natural environment.

Book ChapterDOI
TL;DR: This analysis highlights fundamental differences in the changes that the host undergoes in its immune and general physiology in response to the two parasitic wasps, and compares virulence strategies of Leptopilina boulardi and L. heterotoma in relation to genome-wide changes in gene expression in the fly hosts after infection.
Abstract: To ensure survival, parasitic wasps of Drosophila have evolved strategies to optimize host development to their advantage. They also produce virulence factors that allow them to overcome or evade host defense. Wasp infection provokes cellular and humoral defense reactions, resulting in alteration in gene expression of the host. The activation of these reactions is controlled by conserved mechanisms shared by other invertebrate and vertebrate animals. Application of genomics and bioinformatics approaches is beginning to reveal comparative host gene expression changes after infection by different parasitic wasps. We analyze this comparison in the context of host physiology and immune cells, as well as the biology of the venom factors that wasps introduce into their hosts during oviposition. We compare virulence strategies of Leptopilina boulardi and L. heterotoma, in relation to genome-wide changes in gene expression in the fly hosts after infection. This analysis highlights fundamental differences in the changes that the host undergoes in its immune and general physiology in response to the two parasitic wasps. Such a comparative approach has the potential of revealing mechanisms governing the evolution of pathogenicity and how it impacts host range.

Book ChapterDOI
TL;DR: It is proposed to extend the 'extended phenotype' concept and not only include the ultimate but also the proximate, physiological causes of parasite-induced host manipulation, which is suggested to be caused by the interactions of the parasite with the hosts' immune systems.
Abstract: Host-parasite interactions in parasites with complex life cycles have recently gained much interest. Here, we take an evolutionary ecologist's perspective and analyse the immunological interaction of such a parasite, the model tapeworm Schistocephalus solidus, with its two intermediate hosts, a cyclopoid copepod and the three-spined stickleback. We will be focussing especially on the parallel links between the different phases during an infection in the different hosts; the immunological interactions between host(s) and parasite; and their impact on parasite establishment, growth, host manipulation and parasite virulence in the next host in the cycle. We propose to extend the 'extended phenotype' concept and not only include the ultimate but also the proximate, physiological causes. In particular, parasite-induced host manipulation is suggested to be caused by the interactions of the parasite with the hosts' immune systems.

Book ChapterDOI
TL;DR: Ecologically based control, including the management of conditions leading to spill-overs into target host populations, is likely to be more effective and sustainable than simple reductions in wildlife populations alone.
Abstract: Zoonoses in wildlife not only play an important ecological role, but pose significant threats to the health of humans, domestic animals and some endangered species. More than two-thirds of emerging, or re-emerging, infectious diseases are thought to originate in wildlife. Despite this, co-ordinated surveillance schemes are rare, and most efforts at disease control operate at the level of crisis management. This review examines the pathways linking zoonoses in wildlife with infection in other hosts, using examples from a range of key zoonoses, including European bat lyssaviruses and bovine tuberculosis. Ecologically based control, including the management of conditions leading to spill-overs into target host populations, is likely to be more effective and sustainable than simple reductions in wildlife populations alone.

Book ChapterDOI
TL;DR: This chapter describes the geographically widespread genetic fixation of traits involved in Drosophila-parasitoid immune interactions and the situations where such fixation is not observed and discusses the potential for parasitoid diversification in relation with the fact that most observed geographic situations correspond to coevolutionary cold spots, due to fixation of virulence in Parasitoid taxa.
Abstract: In this chapter, we describe the geographically widespread genetic fixation of traits involved in Drosophila–parasitoid immune interactions and the situations where such fixation is not observed. We then discuss how the three classes of coevolutionary dynamics that can occur at the local scale (coevolutionary escalation, coevolutionary alternation and coevolutionary polymorphism), the geographic mosaic of selection, and the phylogenetic constraints may explain such evolutionary patterns and drive diversification in the interactions. Most Drosophila parasitoid traits involved in virulence are host-species specific. Directional selection (coevolutionary escalation) on such traits can lead to their fixation or on the contrary maintain their polymorphism if these traits are associated with fitness costs. When hosts targeted by different host-specific virulence systems coexist, fluctuations in selective pressures on these systems, together with the ability of Drosophila parasitoids to select the most susceptible host for parasitization, can lead to coevolutionary alternation. Finally, we discuss the potential for parasitoid diversification in relation with the fact that most observed geographic situations, for different parasitoid clades, correspond to coevolutionary cold spots, due to fixation of virulence in parasitoid taxa.

Book ChapterDOI
TL;DR: It is suggested microsporidian parasites that infect mosquitoes could be potentially effective and sustainable agents for malaria control and may be evolution-proof, for the evolutionarily most important trait is juvenile survival, whereas the two epidemiologically most important factors are traits of the adult mosquito: biting rate and longevity.
Abstract: Despite our efforts at malaria control, malaria remains one of our most serious and deadly diseases. The failure of control stems in part from the parasite's intense transmission in many areas and from the emergence and spread of resistance of the malaria parasites and their mosquito vectors against most of the chemicals used to attack them. New methods for control are desperately needed. However, new methods will be useful only if they are effective (i.e., decrease transmission substantially) and evolutionarily sustainable (i.e., evolution-proof, in that they prevent evolution from eroding efficacy). We suggest microsporidian parasites that infect mosquitoes could be potentially effective and sustainable agents for malaria control. They may be effective because they target several epidemiologically important traits: survival of larvae (and thus number of adult mosquitoes), adult longevity, biting rate and the development of malaria within the mosquitoes. Even if each trait is affected only moderately, the intensity of transmission can be reduced considerably. They may be evolution-proof, for the evolutionarily most important trait is juvenile survival, whereas the two epidemiologically most important factors are traits of the adult mosquito: biting rate and longevity. Under the intense microsporidian pressure of a control programme, it is likely (if not inevitable) that the larvae evolve to survive microsporidian infection. However, if this larval tolerance to microsporidians is genetically correlated with the adult traits, tolerant mosquitoes may not live as long and bite less frequently than microsporidian-sensitive ones. While such a trade-off has not been measured, combining several studies suggests indirectly a negative genetic correlation between larval tolerance and adult longevity. Therefore, evolution might not undermine control; rather it might increase its effectiveness. While the evolution of resistance may be inevitable, the failure of control need not be.

Book ChapterDOI
TL;DR: This chapter presents how an inherited virus was recently discovered in the Drosophila parasitoid, Leptopilina boulardi, and shows that this virus is responsible for an increase in the superparasitism tendency of the infected females.
Abstract: Insect parasitoids are often infected with heritable viruses. Some of them, such as polydnaviruses, have evolved toward an obligatory relationship with the parasitoid because they are necessary to protect the parasitoid egg from the host immune reaction. However, recent and past discoveries have revealed the presence of facultative inherited viruses in parasitoids for which no clear phenotypic effect was observed. In this chapter, we present how such an inherited virus was recently discovered in the Drosophila parasitoid, Leptopilina boulardi. We show that this virus is responsible for an increase in the superparasitism tendency of the infected females. This alteration is beneficial for the virus, since superparasitism conditions permit the horizontal transmission of the virus. We review theoretical developments suggesting that this leads to a conflict of interest between the parasitoid and the virus. The direct and indirect influence of the virus on several other fitness traits has also been studied both empirically and theoretically, in particular the egg load. Finally, because the frequency of horizontal transmission is a crucial parameter for the evolution of the superparasitism manipulation, we present an attempt to select the virus for high or low manipulation intensity.

Book ChapterDOI
TL;DR: A comparative study of the venom apparatuses from three Asobara spp.'s revealed important differences, and the physiological effects of female wasp's venom injected into Drosophila larvae differed greatly between the tested Aso Barbara spp.
Abstract: Hymenoptera of the Asobara genus are endophagous parasitoids of Drosophila larvae. In these apocrita insects whose venom gland is associated with the female reproductive tract, the wasp venom is injected into the host along with the parasitoid egg during oviposition. We conducted a comparative study of the venom apparatuses from three Asobara spp.: the European Asobara tabida, the Asiatic A. japonica and the African A. citri. Light and electron microscopy of venom glands, together with the biochemical analysis of their contents, revealed important differences between Asobara spp. In addition, the physiological effects of female wasp's venom injected into Drosophila larvae differed greatly between the tested Asobara spp.

Book ChapterDOI
TL;DR: This chapter summarizes what could be learnt on the cellular features of the encapsulation process in various Drosophila spp.
Abstract: The immunity of Drosophila relies on a variety of defenses cooperating to fight parasites and pathogens. The encapsulation reaction is the main hemocytic response neutralizing large parasites like endophagous parasitoids. The diversity of the mechanisms of immunoevasion evolved by Asobara parasitoids, together with the wide spectrum of Drosophila host species they can parasitize, make them ideal models to study and unravel the physiological and cellular aspects of host immunity. This chapter summarizes what could be learnt on the cellular features of the encapsulation process in various Drosophila spp., and also on the major role played by Drosophila hosts hemocytes subpopulations, both in a quantitative and qualitative manner, regarding the issue of the immune Asobara-Drosophila interactions.

Book ChapterDOI
TL;DR: It is pointed out that information use itself is under strong selective pressure and thus, optimized by parasitic wasps, and this holds for host habitat and host location as well as for host choice and search time allocation.
Abstract: Drosophilids and their associated parasitoids live in environments that vary in resource availability and quality within and between generations. The use of information to adapt behavior to the current environment is a key feature under such circumstances and Drosophila parasitic wasps are excellent model systems to study learning and information use. They are among the few parasitoid model species that have been tested in a wide array of situations. Moreover, several related species have been tested under similar conditions, allowing the analysis of within and between species variability, the effect of natural selection in a typical environment, the current physiological status, and previous experience of the individual. This holds for host habitat and host location as well as for host choice and search time allocation. Here, we review patterns of learning and memory, of information use and updating mechanisms, and we point out that information use itself is under strong selective pressure and thus, optimized by parasitic wasps.

Book ChapterDOI
TL;DR: Review of the parasite's life cycle demonstrates that it has become adapted to exploit multiple routes of transmission through a sexual cycle in the definitive host and asexually, through carnivory, and by vertical transmission.
Abstract: Toxoplasma gondii is a highly successful parasite that infects many host species and has colonised a wide range of habitats. Review of the parasite's life cycle demonstrates that it has become adapted to exploit multiple routes of transmission through a sexual cycle in the definitive host and asexually, through carnivory, and by vertical transmission. These alternative routes may operate synergistically to enhance transmission, but they might also provide a vehicle for selection leading to partitioning of strains in the environment. Genetic analysis has shown that parasite population structure varies globally. In South America, there is high strain diversity while in North America, Europe and Africa three clonal strain types predominate. This may imply a shift from sexual to asexual transmission. Mapping of the parasite genome has provided a wealth of markers for strain characterisation. Close genotyping of isolates gives evidence of multiple infection and recombination in natural populations and reveals differences in both the distribution and the phenotype of strains. More intensive epidemiological studies are now required to unravel the networks of transmission operating within defined habitats.

Book ChapterDOI
TL;DR: The current knowledge on the associations between Wolbachia and Drosophila parasitoids is reviewed, open questions are identified and new research directions are specified, both in the laboratory as in the field.
Abstract: Wolbachia bacteria are cytoplasmic endosymbionts that infect a wide range of arthropod and nematode hosts. They are transmitted from mother to offspring via the eggs (vertical transmission) and enhance their transmission to the next generation by manipulating the reproductive system of their hosts. These manipulations occur in many forms, such as the induction of cytoplasmic incompatibility, feminization, male killing and parthenogenesis induction. Wolbachia is estimated to occur in up to 66% of all insect species, but the greatest diversity of reproductive manipulations is found in the order of the Hymenoptera. Studies of Wolbachia in Drosophila-parasitoid communities have allowed for important insights into different aspects of Wolbachia biology. The extensive knowledge available on Drosophila parasitoids provides a solid base on which to test new hypotheses on host-Wolbachia interactions. The large range of Wolbachia phenotypes present in Drosophila parasitoids, combined with the recent acquisition of the bacteria from their Drosophilid hosts, make them an ideal model system to study the evolution and dynamics of Wolbachia infections, both in the laboratory as in the field. In this chapter, we aim to review the current knowledge on the associations between Wolbachia and Drosophila parasitoids, and identify open questions and specify new research directions.

Book ChapterDOI
TL;DR: A series of behavioral studies designed to document how Leptopilina spp.
Abstract: This chapter presents a series of behavioral studies designed to document how Leptopilina spp. learn fruit odours in order to find and explore host-infested fruits. Experimental analyses of conditioned responses explored individual learning, physiological changes and genetic variability as adaptive mechanisms of the host searching behavior. Both oriented walking and substrate probing can be easily observed and quantified in laboratory devices. We studied walking in a four-arm olfactometer and probing in an agar substrate in response to olfactory stimulation by fruit odours. We analyzed the odour learning process and the dynamics of the memory. We next investigated how odour memory is influenced by motivation factors such as mating or egg-load, and how much variation is due to inheritance, using isofemale lines. Next, we addressed the adaptive significance of innate and conditioned responses to fruit odour by comparing and crossing populations originating from areas with contrasted levels of host availability.

Book ChapterDOI
TL;DR: This chapter examines the significant studies on the caecal paramphistomid Zygocotyle lunata from mainly 1941 to 2008 and concludes that the organism is in need of new research efforts at all levels of organization from the molecular to the community.
Abstract: This chapter examines the significant studies on the caecal paramphistomid Zygocotyle lunata from mainly 1941 to 2008. This digenean is one of two paramphistomid species in the family Zygocotylidae. Z. lunata has an almost global distribution being found in the wild in numerous waterfowl and various species of ruminants. It infects planorbid snails in the genera Helisoma and Biomphalaria. Because it may involve concurrent infections with Schistosoma mansoni in species of Biomphalaria snails, there is an interest in Z. lunata as a potential control agent against S. mansoni. Z. lunata may have some impact as a pathogen of birds in wildlife diseases, but its real assessment in this role is not fully understood. The cercariae of this paramphistomid when released from snails encyst on a substratum such as vegetation or the shells of aquatic invertebrates in the wild or in the laboratory on the glass or plastic of a container holding the snails. Most studies on the intra-molluscan parasitic stages are based on work from snails collected in the wild and experimental studies using laboratory-reared snails are sparse. Numerous experimental mammalian and avian hosts can be infected with the metacercarial cysts of this digenean, but quantitative experimental studies on the adult stages of this parasite using known numbers of cysts and well-defined strains of vertebrate hosts are sparse. Likewise, some studies on the immunology and pathology of this trematode have been done, but for the most part they are fragmentary and do not provide quantitative information on these topics. Published information on the molecular biology of this organism does not exist. The organism is in need of new research efforts at all levels of organization from the molecular to the community.

Book ChapterDOI
TL;DR: The physiological mechanisms underlying the conformer and regulator strategies in Asobara are exposed and the factors which may contribute to the diversity of the means developed by Aso Barbara parasitoids to overcome the hosts' immunity defenses are discussed.
Abstract: Eggs and larvae of endophagous parasitoids face the host's immunity reaction once they penetrate the insect host's hemocele. In order to overcome the host's immune barrier, endoparasitoids have developed various strategies. Conformer parasitoids hide and/or get protected from the attack by the host's immunity cells without interfering with the host's immune system. Differently, regulator parasitoids directly attack the host's hemocytes, therefore totally inhibiting the immunity reaction of encapsulation in the parasitized host. Female wasps may also discriminate immunoreactive hosts from nonreactive, permissive ones before laying an egg. These different strategies coexist within the same genus of the braconids Asobara, endoparasitoids of Drosophila larvae. The physiological mechanisms underlying the conformer and regulator strategies in Asobara are exposed. The factors which may contribute to the diversity of the means developed by Asobara parasitoids to overcome the hosts' immunity defenses are discussed.

Book ChapterDOI
TL;DR: It is evident that viral mutations that enable HIV to evade the CTL response are indeed already accumulating in populations where the selecting HLA molecules are highly prevalent, indicating the dynamic and shifting nature of the evolutionary interplay between HIV and human populations.
Abstract: The human immunodeficiency virus (HIV) epidemic provides a rare opportunity to examine in detail the initial stages of a host-pathogen co-evolutionary struggle in humans. The genes encoding the human leukocyte antigen (HLA) class I molecules have a critical influence in the success or failure of the immune response against HIV. The particular HLA class I molecules expressed by each individual defines the type of cytotoxic T-lymphocyte (CTL) response that is made against the virus. This chapter describes the role of HLA class I and the CTL response in controlling HIV replication, and discusses the extent to which HIV has already adapted to those HLA class I molecules and CTL responses that are most effective in viral suppression. It is evident that viral mutations that enable HIV to evade the CTL response are indeed already accumulating in populations where the selecting HLA molecules are highly prevalent, indicating the dynamic and shifting nature of the evolutionary interplay between HIV and human populations.

Book ChapterDOI
TL;DR: To develop the optimum methods for controlling the parasites that cause these NTDs, knowledge of the life cycles of both the parasites and their vectors are essential and a paucity of newly trained vector-borne disease experts may constrain future control efforts.
Abstract: This paper considers the various measures available to control several of the neglected tropical diseases (NTDs). To develop the optimum methods for controlling the parasites that cause these NTDs, knowledge of the life cycles of both the parasites and their vectors are essential. Each NTD requires its own strategy for control based on detailed knowledge of the life cycle, and vector control, chemotherapy, better water supplies and better hygiene are all components that may be appropriate. For some diseases, improved drugs are urgently required, for some the tools are available for elimination, while uniquely guinea worm could be eradicated without any chemotherapeutic drug being used. Several NTDs lend themselves to mass drug administration (MDA) in which human populations are annually offered safe, effective and usually donated drugs with a view to morbidity control and/or elimination. The drugs could and should be used to improve the quality of millions of lives, prevent suffering, stigma, disfigurement and early death. The role of pharmaceutical companies who have donated their drugs for the treatment of millions of disadvantaged people in the developing world is acknowledged. One result of such drug pressure however is that evolutionary change may result, and it is incumbent on scientists during monitoring and evaluation of control programmes to ensure that such changes are recognised. One other unfortunate development is that a paucity of newly trained vector-borne disease experts may constrain future control efforts.