scispace - formally typeset
Search or ask a question

Showing papers in "Boundary-Layer Meteorology in 2006"


Journal ArticleDOI
TL;DR: A numerically stable version of the improved Mellor-Yamada (M-Y) Level-3 model was proposed by Nakanishi and Niino in this article.
Abstract: This note describes a numerically stable version of the improved Mellor–Yamada (M–Y) Level-3 model proposed by Nakanishi and Niino [Nakanishi, M and Niino, H: 2004, Boundary-Layer Meteorol 112, 1–31] and demonstrates its application to a regional prediction of advection fog In order to ensure the realizability for the improved M–Y Level-3 model and its numerical stability, restrictions are imposed on computing stability functions, on L/q, the temperature and water-content variances, and their covariance, where L is the master length scale and q 2/2 the turbulent kinetic energy per unit mass The model with these restrictions predicts vertical profiles of mean quantities such as temperature that are in good agreement with those obtained from large-eddy simulation of a radiation fog In a regional prediction, it also reasonably reproduces the satellite-observed horizontal distribution of an advection fog

1,017 citations


Journal ArticleDOI
TL;DR: The universal length scale for exchange processes in the surface layer was the basis for the derivation of the similarity theory by Monin and Obukhov in 1954 as mentioned in this paper, and the current status of the theory is described, covering topics such as the accuracy of the universal functions and turbulent Prandtl number.
Abstract: This historical survey shows that Obukhov’s 1946 fundamental paper on a universal length scale for exchange processes in the surface layer was the basis for the derivation of the similarity theory by Monin and Obukhov in 1954. A brief overview of the experiments and findings used to formulate the universal functions in the presently used form is given. Finally, the current status of the theory is described, covering topics such as the accuracy of the universal functions and the turbulent Prandtl number.

538 citations


Journal ArticleDOI
TL;DR: In this article, the authors compare large-eddy simulation (LES) models for the stable boundary layer (SBL) as part of the Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study initiative.
Abstract: Results are presented from the first intercomparison of large-eddy simulation (LES) models for the stable boundary layer (SBL), as part of the Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study initiative. A moderately stable case is used, based on Arctic observations. All models produce successful simulations, in as much as they generate resolved turbulence and reflect many of the results from local scaling theory and observations. Simulations performed at 1-m and 2-m resolution show only small changes in the mean profiles compared to coarser resolutions. Also, sensitivity to subgrid models for individual models highlights their importance in SBL simulation at moderate resolution (6.25 m). Stability functions are derived from the LES using typical mixing lengths used in numerical weather prediction (NWP) and climate models. The functions have smaller values than those used in NWP. There is also support for the use of K-profile similarity in parametrizations. Thus, the results provide improved understanding and motivate future developments of the parametrization of the SBL.

496 citations


Journal ArticleDOI
TL;DR: In this article, a simulation of turbulent flow over regular arrays of urban-like, cubical obstacles is presented, and results are analyzed in terms of a formal spatial averaging procedure to enable interpretation of the flow within the arrays as a canopy flow, and of flow above as a rough wall boundary layer.
Abstract: Direct numerical simulations of turbulent flow over regular arrays of urban-like, cubical obstacles are reported. Results are analysed in terms of a formal spatial averaging procedure to enable interpretation of the flow within the arrays as a canopy flow, and of the flow above as a rough wall boundary layer. Spatial averages of the mean velocity, turbulent stresses and pressure drag are computed. The statistics compare very well with data from wind-tunnel experiments. Within the arrays the time-averaged flow structure gives rise to significant ‘dispersive stress’ whereas above the Reynolds stress dominates. The mean flow structure and turbulence statistics depend significantly on the layout of the cubes. Unsteady effects are important, especially in the lower canopy layer where turbulent fluctuations dominate over the mean flow.

431 citations


Journal ArticleDOI
TL;DR: In this article, a moderately stratified Arctic case is simulated by nineteen single-column turbulence schemes and the sensitivities of the schemes to the parameters of their turbulence closures are partially explored.
Abstract: The parameterization of the stably stratified atmospheric boundary layer is a difficult issue, having a significant impact on medium-range weather forecasts and climate integrations. To pursue this further, a moderately stratified Arctic case is simulated by nineteen single-column turbulence schemes. Statistics from a large-eddy simulation intercomparison made for the same case by eleven different models are used as a guiding reference. The single-column parameterizations include research and operational schemes from major forecast and climate research centres. Results from first-order schemes, a large number of turbulence kinetic energy closures, and other models were used. There is a large spread in the results; in general, the operational schemes mix over a deeper layer than the research schemes, and the turbulence kinetic energy and other higher-order closures give results closer to the statistics obtained from the large-eddy simulations. The sensitivities of the schemes to the parameters of their turbulence closures are partially explored.

323 citations


Journal ArticleDOI
TL;DR: In this article, the results support the contention that organized eddy structures in the near-wall region differ significantly from those in regular smooth-wall flows or in rough-wall boundary layers with much smaller h/δ ratios (where δ and h are the boundary-layer thickness and the height of the roughness elements, respectively).
Abstract: Turbulence data from experiments conducted over a staggered cube array, modelling a neutrally stable atmospheric boundary layer in an urban environment, are presented. The results support the contention that organised eddy structures in the near-wall region differ significantly from those in regular smooth-wall flows or in rough-wall boundary layers with much smaller h/δ ratios (where δ and h are the boundary-layer thickness and the height of the roughness elements, respectively). Attention is concentrated on spatial correlations, spectra (and thus the dominant length and time scales), maps of anisotropy invariants and quadrant analyses of the stress tensor. Results are obtained within both the roughness sublayer (i.e. the region above the roughness but within which the flow is spatially inhomogeneous) and the canopy region (i.e. below the height of the roughness elements) and discussion includes consideration of the turbulence kinetic energy balance at various heights.

199 citations


Journal ArticleDOI
TL;DR: In this paper, different aspects of the quality assurance and quality control (QA/QC) of micrometeorological measurements were combined to create a comprehensive algorithm which was then applied to experimental data from LITFASS-2003 (Lindenberg Inhomogeneous Terrain-Fluxes between Atmosphere and Surface: a long term study).
Abstract: Different aspects of the quality assurance and quality control (QA/QC) of micrometeorological measurements were combined to create a comprehensive algorithm which was then applied to experimental data from LITFASS-2003 (Lindenberg Inhomogeneous Terrain—Fluxes between Atmosphere and Surface: a long term Study). Eddy-covariance measurements of the latent heat flux were the main focus of the QA/QC efforts. The results of a turbulence sensor intercomparison experiment showed deviations between the different eddy-covariance systems on the order of 15%, or less than 30 W m−2, for the latent heat flux and 5%, or less than 10 W m−2, for the sensible heat flux. In order to avoid uncertainties due to the post-processing of turbulence data, a comprehensive software package was used for the analysis of experimental data from LITFASS-2003, including all necessary procedures for corrections and quality control. An overview of the quality test results shows that for most of the days more than 80% of the available latent heat flux data are of high quality so long as there are no instrumental problems. The representativeness of a flux value for the target land-use type was analysed using a stochastic footprint model. Different methods to calculate soil heat fluxes at the surface are discussed and a sensitivity analysis is conducted to select the most robust method for LITFASS-2003. The lack of energy balance closure, which was found for LITFASS-2003, can probably be attributed to the presence of low-frequency flux contributions that cannot be resolved with an averaging time of 30 min. Though the QA/QC system has been developed for the requirements of LITFASS-2003, it can also be applied to other experiments dealing with similar objectives.

190 citations


Journal ArticleDOI
TL;DR: In this paper, a combination of the averaging variance method and the high-resolution gradient method is used to determine boundary layer height, which corresponds to the standard deviation of lidar-derived 10min values within a 1-h interval.
Abstract: The height of the atmospheric boundary layer is derived with the help of two different measuring systems and methods. From radiosoundings the boundary layer height is determined by the parcel method and by temperature and humidity gradients. From lidar backscatter measurements a combination of the averaging variance method and the high-resolution gradient method is used to determine boundary layer heights. In this paper lidar-derived boundary layer heights on a 10 min basis are presented. Datasets from four experiments – two over land and two over the sea – are used to compare boundary layer heights from both methods. Only the daytime boundary layer is investigated because the height of the nighttime stable boundary layer is below the range of the lidar. In many situations the boundary layer heights from both systems coincide within ±200 m. This corresponds to the standard deviation of lidar-derived 10-min values within a 1-h interval and is due to the time and space variability of the boundary layer height. Deviations appear for certain situations and depend on which radiosonde method is applied. The parcel method fails over land surfaces in the afternoon when the boundary layer stabilizes and over the ocean when the boundary layer is slightly stable. An automatic radiosonde gradient method sometimes fails when multiple layers are present, e.g. a residual layer above the growing convective boundary layer. The lidar method has the advantage of continuous tracing and thus avoids confusion with elevated layers. On the other hand, it mostly fails in situations with boundary layer clouds

185 citations


Journal ArticleDOI
TL;DR: In this paper, a large-eddy simulation (LES) model for a city (LES-CITY) was used to investigate the turbulent organized structures (TOS) above building arrays, which roughly corresponded to the conventional classification of D-type and K-type roughness.
Abstract: Turbulent organized structures (TOS) above building arrays were investigated using a large-eddy simulation (LES) model for a city (LES-CITY). Square and staggered building arrays produced contrasting behaviour in terms of turbulence that roughly corresponded to the conventional classification of ‘D-type’ and ‘K-type’ roughness, respectively: (1) The drag coefficients (referred to the building height) for staggered arrays were sensitive to building area density, but those for square arrays were not. (2) The relative contributions of ejections to sweeps (S2/S4) at the building height for square arrays were sensitive to building area density and nearly equalled or exceeded 1.0 (ejection dominant), but those for staggered arrays were insensitive to building area density and were mostly below 1.0 (sweep dominant). (3) Streaky patterns of longitudinal low speed regions (i.e., low speed streaks) existed in all flows regardless of array type. Height variations of the buildings in the square array drastically increased the drag coefficient and modified the turbulent flow structures. The mechanism of D-type and K-type urban-like roughness flows and the difference from vegetation flows are discussed. Although urban-like roughness flows exhibited mixed properties of mixing layers and flat-wall boundary layers as far as S2/S4 was concerned, the turbulent organized structures of urban-like roughness flows resembled those of flat-wall boundary layers.

168 citations


Journal ArticleDOI
TL;DR: In this article, three derivative methods have been tested in this complex coastal area using the range-squared-corrected lidar signal: (1) the minimum of its first derivative, (2) the minimization of its second derivative, and (3) the minimal of the first derivative of its logarithm.
Abstract: Regular aerosol backscatter measurements using an elastic-backscatter lidar were performed between May 2000 and December 2002 in Barcelona (Spain), within the framework of the European project EARLINET (European Aerosol Research Lidar Network). The mixed-layer depth was one of the major parameters to be retrieved. Three derivative methods have been tested in this complex coastal area using the range-squared-corrected lidar signal: (1) the minimum of its first derivative, (2) the minimum of its second derivative, and (3) the minimum of the first derivative of its logarithm. The second method was found to give statistically the best results when compared to radiosoundings, and was used to process the whole dataset. A number of 162 days and 660 profiles averaged over 30 min have been examined. Between 1000 and 1500 UTC, the mixed-layer depth oscillates between 300 and 1450 m in summer and between 390 and 1420 m in winter. The standard deviation for this portion of the day is 180 and 256 m, respectively, in summer and winter. In summer, low heights (mainly limited to 400–800 m) are associated with large mesoscale compensatory subsidence over the sea and to the thermal internal boundary-layer formation. The strong coastal and orographic influences and the climatological settling of Barcelona determine the complexity of the boundary-layer dynamics and the high heterogeneity of the lidar signals. In many cases, single lidar analyses do not allow an unambiguous determination of the mixed-layer depth. Two diurnal cycle measurements are discussed together with synoptic maps, backtrajectories and radiosoundings in order to outline the complexity of the area and the limitations of the methods.

154 citations


Journal ArticleDOI
TL;DR: In this article, statistical tools based on the maximal overlap discrete wavelet transform (MODWT) are reviewed, and then applied to a dataset of aircraft observations of the atmospheric boundary layer from the tropical eastern Pacific, which includes quasi-stationary and nonstationary segments.
Abstract: Statistical tools based on the maximal overlap discrete wavelet transform (MODWT) are reviewed, and then applied to a dataset of aircraft observations of the atmospheric boundary layer from the tropical eastern Pacific, which includes quasi-stationary and non-stationary segments. The wavelet methods provide decompositions of variances and covariances, e.g. fluxes, between time scales that effectively describe a broadband process like atmospheric turbulence. Easily understood statistical confidence bounds are discussed and applied to these scale decompositions, and results are compared to Fourier methods for quasi-stationary turbulence. The least asymmetric LA(8) wavelet filter yields coefficients that exhibit better uncorrelatedness across scales than the Haar filter and is better suited for decomposition of broadband turbulent signals. An application to a non-stationary segment of our dataset, namely vertical profiles of the turbulent dissipation rate, highlights the flexibility of wavelet methods.

Journal ArticleDOI
TL;DR: In this article, a modification of the most popular two-equation (E-φ) models, taking into account the plant drag, is proposed, where the model constants estimated experimentally for free-air flow do not allow for adequate reconstruction of the ratio between the production and dissipation rates of TKE in the vegetation canopy and have to be adjusted.
Abstract: A modification of the most popular two-equation (E–φ) models, taking into account the plant drag, is proposed Here E is the turbulent kinetic energy (TKE) and φ is any of the following variables: El (product of E and the mixing length l), \(\varepsilon\) (dissipation rate of TKE), and ω (specific dissipation of TKE, \(\omega = \varepsilon\!/\!E\)) The proposed modification is due to the fact that the model constants estimated experimentally for ‘free-air’ flow do not allow for adequate reconstruction of the ratio between the production and dissipation rates of TKE in the vegetation canopy and have to be adjusted The modification is universal, ie of the same type for all E–φ models considered The numerical experiments carried out for both homogeneous and heterogeneous plant canopies with E–φ models (and with the E–l model taken as a kind of reference) show that the modification performs well They also suggest that E–\(\varepsilon\) and E–ω schemes are more promising than the E–El scheme for canopy flow simulation since they are not limited by the need to use a wall function

Journal ArticleDOI
TL;DR: In weak wind stable conditions, eddy-correlation fluxes calculated using conventional averaging times of 5 min or longer to define the perturbations are severely contaminated by poorly sampled mesoscale motions as mentioned in this paper.
Abstract: In weak wind stable conditions, eddy-correlation fluxes calculated using conventional averaging times of 5 min or longer to define the perturbations are severely contaminated by poorly sampled mesoscale motions. A method is developed to identify the averaging time for each individual data record that captures the turbulence while excluding most of the mesoscale motions. The method is based on multiresolution decomposition of the heat flux, and provides an objective procedure for selecting the averaging time for calculating eddy-correlation fluxes. Eddy-correlation data collected in weak turbulence conditions over grass, snow, a pine forest and the ocean are used to demonstrate the approach.

Journal ArticleDOI
TL;DR: In this article, the statistics of turbulent flow across a forest edge have been examined using large-eddy simulation, and results compared with field and wind-tunnel observations, and it is observed that the maximum distortion angle is about 8 degrees from the horizontal.
Abstract: The statistics of turbulent flow across a forest edge have been examined using large-eddy simulation, and results compared with field and wind-tunnel observations. The moorland-to-forest transition is characterized by flow deceleration in the streamwise direction, upward distortion of the mean flow, formation of a high pressure zone immediately in front of the edge, suppression of the standard deviations and covariance of velocity components, and enhancement of velocity skewnesses. For the selected forest density, it is observed that the maximum distortion angle is about 8 degrees from the horizontal. Instead of approaching a downwind equilibrium state in a monotonic manner, turbulence (standard deviations and covariances of velocity components) and mean streamwise velocity undershoot in the transition zone behind the edge. Evolution of flow statistics clearly reveals the growth of an internal boundary layer, and the establishment of an equilibrium layer downwind of the edge. It is evident that lower-order moments generally adjust more quickly over the new rough surface than do higher-order moments. We also show that the streamwise velocity standard deviation at canopy height starts its recovery over the rough surface sooner than does the vertical velocity standard deviation, but completes full adjustment later than the latter. Despite the limited domain size upstream of the edge, large-eddy simulation has successfully reproduced turbulent statistics in good agreement with field and wind-tunnel measurements.

Journal ArticleDOI
TL;DR: In this article, the authors examined the transport by extremely weak turbulence occurring on nights with clear skies and weak winds from seven tower levels of eddy-correlation data taken from each of two field programs.
Abstract: Transport by extremely weak turbulence occurring on nights with clear skies and weak winds is examined from seven tower levels of eddy-correlation data taken from each of two field programs. The very small flux is systematic, provided that the perturbations are computed from a record-dependent averaging length, which must be as small as 10 s in very stable conditions. With traditional methods for computing the flux, these fluxes were considered too small to estimate, in that the computed values behaved erratically. For extremely weak turbulence, the fluxes decrease systematically with height and often indicate very shallow boundary-layer depths on the order of 10 m. However, in one field program, the turbulence slowly increases with height above the surface flux-based boundary layer apparently due to horizontal advection of stronger turbulence driven by modest surface heterogeneity. For very weak turbulence, the eddy diffusivity for momentum is systematically greater than that for heat in both field programs. The dependence of the turbulence strength and its variability with stability is examined in some detail.

Journal ArticleDOI
TL;DR: The LITFASS-2003 experiment at 13 field sites over different types of land use (forest, lake, grassland, various agricultural crops) in a 20 × 20 km2 area around the Meteorological Observatory Lindenberg (MOL) of the German Meteorological Service (Deutscher Wetterdienst, DWD) was performed.
Abstract: Micrometeorological measurements (including eddy-covariance measurements of the surface fluxes of sensible and latent heat) were performed during the LITFASS-2003 experiment at 13 field sites over different types of land use (forest, lake, grassland, various agricultural crops) in a 20 × 20 km2 area around the Meteorological Observatory Lindenberg (MOL) of the German Meteorological Service (Deutscher Wetterdienst, DWD). Significant differences in the energy fluxes could be found between the major land surface types (forest, farmland, water), but also between the different agricultural crops (cereals, rape, maize). Flux ratios between the different surfaces changed during the course of the experiment as a result of increased water temperature of the lake, changing soil moisture, and of the vegetation development at the farmland sites. The measurements over grass performed at the boundary-layer field site Falkenberg of the MOL were shown to be quite representative for the farmland part of the area. Measurements from the 13 sites were composed into a time series of the area-averaged surface flux by taking into account the data quality of the single flux values from the different sites and the relative occurrence of each surface type in the area. Such composite fluxes could be determined for about 80% of the whole measurement time during the LITFASS-2003 experiment. Comparison of these aggregated surface fluxes with area-averaged fluxes from long-range scintillometer measurements and from airborne measurements showed good agreement.

Journal ArticleDOI
TL;DR: Simultaneous surface-based remote sensing with optical (Ceilometer) and acoustic (Sodar) methods allows the diurnal variation of the structure of the atmospheric boundary layer to be deduced with high temporal resolution as mentioned in this paper.
Abstract: Simultaneous surface-based remote sensing with optical (Ceilometer) and acoustic (Sodar) methods allows the diurnal variation of the structure of the atmospheric boundary layer to be deduced with high temporal resolution. Primarily the convective boundary layer, the nocturnal stable surface layer, and the residual layer can be identified from the measured vertical profiles of aerosol concentration and thermal fluctuations. The ability of the two remote sensing techniques is shown in different examples from two different locations and two seasons. The impact on urban air quality assessment is addressed.

Journal ArticleDOI
TL;DR: In this paper, the validity of the local scaling hypothesis under very stable conditions is investigated by performing extensive analyses of turbulence data from several field campaigns, wind-tunnel experiments and large-eddy simulations.
Abstract: The ‘local scaling’ hypothesis, first introduced by Nieuwstadt two decades ago, describes the turbulence structure of the stable boundary layer in a very succinct way and is an integral part of numerous local closure-based numerical weather prediction models. However, the validity of this hypothesis under very stable conditions is a subject of ongoing debate. Here, we attempt to address this controversial issue by performing extensive analyses of turbulence data from several field campaigns, wind-tunnel experiments and large-eddy simulations. A wide range of stabilities, diverse field conditions and a comprehensive set of turbulence statistics make this study distinct

Journal ArticleDOI
TL;DR: In this article, the role of topography on the structure of turbulence within and above vegetation and its effect on canopy photosynthesis and the measurement of net ecosystem exchange of CO2 (Nee) using flux towers was considered.
Abstract: Topography influences many aspects of forest-atmosphere carbon exchange; yet only a small number of studies have considered the role of topography on the structure of turbulence within and above vegetation and its effect on canopy photosynthesis and the measurement of net ecosystem exchange of CO2 (Nee) using flux towers. Here, we focus on the interplay between radiative transfer, flow dynamics for neutral stratification, and ecophysiological controls on CO2 sources and sinks within a canopy on a gentle cosine hill. We examine how topography alters the forest-atmosphere CO2 exchange rate when compared to uniform flat terrain using a newly developed first-order closure model that explicitly accounts for the flow dynamics, radiative transfer, and nonlinear eco physiological processes within a plant canopy. We show that variation in radiation and airflow due to topography causes only a minor departure in horizontally averaged and vertically integrated photosynthesis from their flat terrain values. However, topography perturbs the airflow and concentration fields in and above plant canopies, leading to significant horizontal and vertical advection of CO2. Advection terms in the conservation equation may be neglected in flow over homogeneous, flat terrain, and then Nee = Fc, the vertical turbulent flux of CO2. Model results suggest that vertical and horizontal advection terms are generally of opposite sign and of the same order as the biological sources and sinks. We show that, close to the hilltop, Fc departs by a factor of three compared to its flat terrain counterpart and that the horizontally averaged Fc-at canopy top differs by more than 20% compared to the flat-terrain case.

Journal ArticleDOI
TL;DR: In this paper, the authors present an update of an existing footprint-based quality evaluation concept for flux measurement sites in complex terrain, and the most significant modifications in the present version are the use of a forward Lagrangian stochastic trajectory model for the determination of the spatial context of the measurements, and determination of effective roughness lengths with a flux aggregation model in a preprocessing step.
Abstract: Horizontal heterogeneity can significantly affect the flux data quality at monitoring sites in complex terrain. In heterogeneous conditions, the adoption of the eddy-covariance technique is contraindicated by the lack of horizontal homogeneity and presence of advective conditions. In addition, uncertainty concerning the sources or sinks influencing a measurement compromises the data interpretation. The consideration of the spatial context of a measurement, defined by a footprint analysis, can therefore provide an important tool for data quality assessment. This study presents an update of an existing footprint-based quality evaluation concept for flux measurement sites in complex terrain. The most significant modifications in the present version are the use of a forward Lagrangian stochastic trajectory model for the determination of the spatial context of the measurements, and the determination of effective roughness lengths with a flux aggregation model in a pre-processing step. Detailed terrain data gathered by remote sensing methods are included. This approach determines spatial structures in the quality of flux data for varying meteorological conditions. The results help to identify terrain influences affecting the quality of flux data, such as dominating obstacles upwind of the site, or slopes biasing the wind field, so that the most suitable footprint regions for the collection of high-quality datasets can be identified. Additionally, the approach can be used to evaluate the performance of a coordinate rotation procedure, and to check to what extent the measured fluxes are representative for a target land-use type.

Journal ArticleDOI
TL;DR: In this article, the performance of a combined large aperture scintillometer (LAS) and a millimetre wave scintilometer (MWS) for estimating surface fluxes of sensible and latent heat over natural landscape is investigated, using data gathered during LITFASS-2003.
Abstract: The performance of a combined large aperture scintillometer (LAS) and a millimetre wave scintillometer (MWS) for estimating surface fluxes of sensible and latent heat over natural landscape is investigated, using data gathered during LITFASS-2003. For this purpose the LAS–MWS system was installed in a moderate heterogeneous landscape over a path length of 4.7 km with an effective beam height of 43 m. The derived surface fluxes have been compared with aggregated eddy-covariance (EC) measurements. The fluxes of sensible and latent heat from the LAS–MWS combination, as well as sensible heat fluxes of the single LAS, agreed fairly well with the EC-based fluxes, considering the uncertainties of the similarity stability functions and observed energy imbalance.

Journal ArticleDOI
TL;DR: The Evaporation at Grid/Pixel Scale (EVA_GRIPS) project as discussed by the authors was developed to determine the area-averaged evaporation over a heterogeneous land surface at the scale of a grid box of a regional numerical weather prediction or climate model, and at a pixel of a satellite image.
Abstract: The Evaporation at Grid/Pixel Scale (EVA_GRIPS) project was realised in order to determine the area-averaged evaporation over a heterogeneous land surface at the scale of a grid box of a regional numerical weather prediction or climate model, and at the scale of a pixel of a satellite image. EVA_GRIPS combined surface-based and airborne measurements, satellite data analysis, and numerical modelling activities. A mesoscale field experiment, LITFASS-2003, was carried out in the heterogeneous landscape around the Meteorological Observatory Lindenberg (MOL) of the German Meteorological Service in May and June, 2003. The experiment was embedded in the comprehensive, operational measurement program of the MOL. Experimental determination of surface fluxes on a variety of spatial scales was achieved by employing micrometeorological flux stations, scintillometers, a combination of ground-based remote sensing instruments, and the Helipod, a turbulence probe carried by a helicopter. Surface energy fluxes were also derived from satellite data. Modelling work included the use of different Soil–Vegetation–Atmosphere Transfer schemes, a large-eddy simulation model and three mesoscale atmospheric models. The paper gives an overview on the background of EVA_GRIPS, and on the measurements and meteorological conditions during LITFASS-2003. A few general results are discussed.

Journal ArticleDOI
TL;DR: In this paper, different methods to determine the height of the convective boundary layer from lidar measurements are described and compared, and the differences in either aerosol backscatter or in humidity between the boundary layer and the free troposphere are evaluated.
Abstract: Different methods to determine the height of the convective boundary layer from lidar measurements are described and compared. The differences in either aerosol backscatter or in humidity between the boundary layer and the free troposphere are used, and either the variance or the gradient profile of the parameter under study is evaluated. On average the different methods are in very good agreement. Temporal resolution of the gradient methods is very high, on the order of seconds, but often there is an ambiguity in the choice of the “relevant” minimum in the gradient that corresponds to the boundary-layer height. This is avoided by combining the variance and the gradient methods, using the result of the variance analysis as an indicator for the region where the minimum of the gradient is sought. The combined method is useful for automated determination of the boundary-layer height at least under convective conditions. Aerosol backscatter is found to be as good an indicator for boundary-layer air as humidity, so a relatively simple backscatter lidar is sufficient for determination of the boundary-layer height.

Journal ArticleDOI
TL;DR: In this paper, changes in scalar similarity between carbon dioxide, sonic temperature and water vapour were assessed using scalar correlation coefficients and spectral analysis, and the influence on REA measurements was assessed by simulation.
Abstract: The relaxed eddy accumulation (REA) method allows the measurement of trace gas fluxes when no fast sensors are available for eddy covariance measurements. The flux parameterisation used in REA is based on the assumption of scalar similarity, i.e., similarity of the turbulent exchange of two scalar quantities. In this study changes in scalar similarity between carbon dioxide, sonic temperature and water vapour were assessed using scalar correlation coefficients and spectral analysis. The influence on REA measurements was assessed by simulation. The evaluation is based on observations over grassland, irrigated cotton plantation and spruce forest. Scalar similarity between carbon dioxide, sonic temperature and water vapour showed a distinct diurnal pattern and change within the day. Poor scalar similarity was found to be linked to dissimilarities in the energy contained in the low frequency part of the turbulent spectra ( < 0.01 Hz). The simulations of REA showed significant change in b-factors throughout the diurnal course. The b-factor is part of the REA parameterisation scheme and describes a relation between the concentration difference and the vertical flux of a trace gas. The diurnal course of b-factors for carbon dioxide, sonic temperature and water vapour matched well. Relative flux errors induced in REA by varying scalar similarity were generally below ± 10%. Systematic underestimation of the flux of up to − 40% was found for the use of REA applying a hyperbolic deadband (HREA). This underestimation was related to poor scalar similarity between the scalar of interest and the scalar used as proxy for the deadband definition.

Journal ArticleDOI
TL;DR: In this paper, the impact of surface roughness on the mean profile, variance and spectra of the resolved velocity near the ground was investigated in large-eddy simulations of a neutral atmospheric boundary layer.
Abstract: An important parameterization in large-eddy simulations (LESs) of high-Reynolds-number boundary layers, such as the atmospheric boundary layer, is the specification of the surface boundary condition. Typical boundary conditions compute the fluctuating surface shear stress as a function of the resolved (filtered) velocity at the lowest grid points based on similarity theory. However, these approaches are questionable because they use instantaneous (filtered) variables, while similarity theory is only valid for mean quantities. Three of these formulations are implemented in simulations of a neutral atmospheric boundary layer with different aerodynamic surface roughness. Our results show unrealistic influence of surface roughness on the mean profile, variance and spectra of the resolved velocity near the ground, in contradiction of similarity theory. In addition to similarity-based surface boundary conditions, a recent model developed from an a priori experimental study is tested and it is shown to yield more realistic independence of the results to changes in surface roughness. The optimum value of the model parameter found in our simulations matches well the value reported in the a priori wind-tunnel study.

Journal ArticleDOI
TL;DR: In this article, a Doppler lidar was used to measure integral scale and coherence of vertical velocity in the convective boundary layer (CBL) during the summer 1996 Lidars in Flat Terrain experiment over level farmland in central Illinois.
Abstract: We utilized a Doppler lidar to measure integral scale and coherence of vertical velocity w in the daytime convective boundary layer (CBL). The high resolution 2 μm wavelength Doppler lidar developed by the NOAA Environmental Technology Laboratory was used to detect the mean radial velocity of aerosol particles. It operated continuously in the zenith-pointing mode for several days in the summer 1996 during the “Lidars in Flat Terrain” experiment over level farmland in central Illinois. We calculated profiles of w integral scales in both the alongwind and vertical directions from about 390 m height to the CBL top. In the middle of the mixed layer we found, from the ratio of the w integral scale in the vertical to that in the horizontal direction, that the w eddies are squashed by a factor of about 0.65 as compared to what would be the case for isotropic turbulence. Furthermore, there is a significant decrease of the vertical integral scale with height. The integral scale profiles and vertical coherence show that vertical velocity fluctuations in the CBL have a predictable anisotropic structure. We found no significant tilt of the thermal structures with height in the middle part of the CBL.

Journal ArticleDOI
TL;DR: In this article, an incomplete third-order cumulant expansion method (ICEM) and standard second-order closure principles were used to predict the imbalance in the stress contribution of sweeps and ejections to momentum transfer.
Abstract: Using an incomplete third-order cumulant expansion method (ICEM) and standard second-order closure principles, we show that the imbalance in the stress contribution of sweeps and ejections to momentum transfer (ΔS o ) can be predicted from measured profiles of the Reynolds stress and the longitudinal velocity standard deviation for different boundary-layer regions. The ICEM approximation is independently verified using flume data, atmospheric surface layer measurements above grass and ice-sheet surfaces, and within the canopy sublayer of maturing Loblolly pine and alpine hardwood forests. The model skill for discriminating whether sweeps or ejections dominate momentum transfer (e.g. the sign of ΔS o ) agrees well with wind-tunnel measurements in the outer and surface layers, and flume measurements within the canopy sublayer for both sparse and dense vegetation. The broader impact of this work is that the “genesis” of the imbalance in ΔS o is primarily governed by how boundary conditions impact first and second moments.

Journal ArticleDOI
TL;DR: In this paper, a large-eddy simulation (LES) was used to investigate the effect of the edge effects in the rapid variation of a number of budget terms across this vegetation transition.
Abstract: Momentum and turbulent kinetic energy (TKE) budgets across a forest edge have been investigated using large-eddy simulation (LES). Edge effects are observed in the rapid variation of a number of budget terms across this vegetation transition. The enhanced drag force at the forest edge is largely balanced by the pressure gradient force and by streamwise advection of upstream momentum, while vertical turbulent diffusion is relatively insignificant. For variance and TKE budgets, the most important processes at the forest edge are production due to the convergence (or divergence) of the mean flow, streamwise advection, pressure diffusion and enhanced dissipation by canopy drag. Turbulent diffusion, pressure redistribution and vertical shear production, which are characteristic processes in homogeneous canopy flow, are less important at the forest transition. We demonstrate that, in the equilibrated canopy flow, a substantial amount of TKE produced in the streamwise direction by the vertical shear of the mean flow is redistributed in the vertical direction by pressure fluctuations. This redistribution process occurs in the upper canopy layers. Part of the TKE in the vertical velocity component is transferred by turbulent and pressure diffusion to the lower canopy levels, where pressure redistribution takes place again and feeds TKE back to the streamwise direction. In this TKE cycle, the primary source terms are vertical shear production for streamwise velocity variance and pressure redistribution for vertical velocity variance. The evolution of these primary source terms downwind of the forest edge largely controls the adjustment rates of velocity variances.

Journal ArticleDOI
TL;DR: In this article, the role of wind shear and inversion strength on the decay of convective turbulence during sunset over land is systematically studied by means of large-eddy simulations, with particular attention paid to the evolution of the characteristic length scale of the various turbulent variables during this process.
Abstract: The role of shear and inversion strength on the decay of convective turbulence during sunset over land is systematically studied by means of large-eddy simulations. Different decay rates have been found for the vertical and horizontal velocity fluctuations, resulting in an increase of the anisotropy for all the studied cases. Entrainment, which persists during the decay process, favours the appearance of vertical upward movements associated with a conversion from kinetic to potential energy. Particular attention is paid to the evolution of the characteristic length scale of the various turbulent variables during this process. The length scale evolution is found to depend on the wind shear characteristics, but not on the strength of the inversion. In general the length scales of the variables grow during decay because small-scale fluctuations dissipate faster than large-scale fluctuations. Only the length scale of the vertical velocity component remains nearly constant during decay. Spectral analysis of the variance budgets shows that pressure correlations are responsible for fixing this length scale, effectively compensating the strong but oscillating influence of buoyancy. In the shear cases, after an initial period of growth, the length scales start to decrease once the buoyancy-generated variance has sufficiently subsided. Also here the effect of pressure redistribution is crucial, as it transfers the spectral influence of shear to the other velocity components.

Journal ArticleDOI
TL;DR: The Global Energy and Water Cycle Experiment (GEWEX) is a program initiated by the World Climate Research Programme (WCRP) to observe, understand and model the hydrological cycle and the related energy fluxes in the atmosphere, at the land surface and in the upper oceans as discussed by the authors.
Abstract: The Global Energy and Water Cycle Experiment (GEWEX) is a program initiated by the World Climate Research Programme (WCRP) to observe, understand and model the hydrological cycle and the related energy fluxes in the atmosphere, at the land surface and in the upper oceans. Consequently the atmospheric boundary layer is an important aspect of the energy and water cycle, which has become crucially important in this new age of coupled atmosphere-land surface-ocean modelling. As such, in 2001, the GEWEX Atmospheric Boundary-layer Study (GABLS) was established. The overall objective of GABLS is to improve the understanding and the representation of the atmospheric boundary layer in regional and large-scale climate models. Such activity is important in itself and also very relevant for other activities in GEWEX, and more generally for the activities within WCRP and the International Geosphere-Biosphere Program (IGBP).