scispace - formally typeset
Search or ask a question

Showing papers in "Chemical Research in Toxicology in 2016"


Journal ArticleDOI
TL;DR: The ToxCast chemical library is demonstrated to provide comprehensive coverage of the knowledge domains and target inventories of potential interest to EPA, and the varied representations and approaches presented here define local chemistry domains potentially worthy of further investigation.
Abstract: The U.S. Environmental Protection Agency’s (EPA) ToxCast program is testing a large library of Agency-relevant chemicals using in vitro high-throughput screening (HTS) approaches to support the development of improved toxicity prediction models. Launched in 2007, Phase I of the program screened 310 chemicals, mostly pesticides, across hundreds of ToxCast assay end points. In Phase II, the ToxCast library was expanded to 1878 chemicals, culminating in the public release of screening data at the end of 2013. Subsequent expansion in Phase III has resulted in more than 3800 chemicals actively undergoing ToxCast screening, 96% of which are also being screened in the multi-Agency Tox21 project. The chemical library unpinning these efforts plays a central role in defining the scope and potential application of ToxCast HTS results. The history of the phased construction of EPA’s ToxCast library is reviewed, followed by a survey of the library contents from several different vantage points. CAS Registry Numbers ar...

455 citations


Journal ArticleDOI
TL;DR: The aerosol from the e-cigarette is compositionally less complex than cigarette smoke and contains significantly lower levels of toxicants, demonstrating that e-cigarettes can be developed that offer the potential for substantially reduced exposure to cigarette toxicants.
Abstract: There is interest in the relative toxicities of emissions from electronic cigarettes and tobacco cigarettes. Lists of cigarette smoke priority toxicants have been developed to focus regulatory initiatives. However, a comprehensive assessment of e-cigarette chemical emissions including all tobacco smoke Harmful and Potentially Harmful Constituents, and additional toxic species reportedly present in e-cigarette emissions, is lacking. We examined 150 chemical emissions from an e-cigarette (Vype ePen), a reference tobacco cigarette (Ky3R4F), and laboratory air/method blanks. All measurements were conducted by a contract research laboratory using ISO 17025 accredited methods. The data show that it is essential to conduct laboratory air/method measurements when measuring e-cigarette emissions, owing to the combination of low emissions and the associated impact of laboratory background that can lead to false-positive results and overestimates. Of the 150 measurands examined in the e-cigarette aerosol, 104 were n...

295 citations


Journal ArticleDOI
TL;DR: The present review looks at progress in computational metabolomics to provide probability-based annotation linking ions to known chemicals and serve as a foundation for unambiguous designation of unidentified ions for toxicologic study.
Abstract: “Sola dosis facit venenum.” These words of Paracelsus, “the dose makes the poison”, can lead to a cavalier attitude concerning potential toxicities of the vast array of low abundance environmental chemicals to which humans are exposed. Exposome research teaches that 80–85% of human disease is linked to environmental exposures. The human exposome is estimated to include >400,000 environmental chemicals, most of which are uncharacterized with regard to human health. In fact, mass spectrometry measures >200,000 m/z features (ions) in microliter volumes derived from human samples; most are unidentified. This crystallizes a grand challenge for chemical research in toxicology: to develop reliable and affordable analytical methods to understand health impacts of the extensive human chemical experience. To this end, there appears to be no choice but to abandon the limitations of measuring one chemical at a time. The present review looks at progress in computational metabolomics to provide probability-based annota...

180 citations


Journal ArticleDOI
TL;DR: A review of the development of 3D liver models can be found in this article, where the authors highlight the need to develop more integrated coculture model systems to emulate immunotoxicities that arise due to complex interactions between hepatocytes and immune cells.
Abstract: The liver is an organ with critical importance for drug treatment as the disposition and response to a given drug is often determined by its hepatic metabolism. Patient-specific factors can entail increased susceptibility to drug-induced liver injury, which constitutes a major risk for drug development programs causing attrition of promising drug candidates or costly withdrawals in postmarketing stages. Hitherto, mainly animal studies and 2D hepatocyte systems have been used for the examination of human drug metabolism and toxicity. Yet, these models are far from satisfactory due to extensive species differences and because hepatocytes in 2D cultures rapidly dedifferentiate resulting in the loss of their hepatic phenotype and functionality. With the increasing comprehension that 3D cell culture systems more accurately reflect in vivo physiology, in the recent decade more and more research has focused on the development and optimization of various 3D culture strategies in an attempt to preserve liver properties in vitro. In this contribution, we critically review these developments, which have resulted in an arsenal of different static and perfused 3D models. These systems include sandwich-cultured hepatocytes, spheroid culture platforms, and various microfluidic liver or multiorgan biochips. Importantly, in many of these models hepatocytes maintain their phenotype for prolonged times, which allows probing the potential of newly developed chemical entities to cause chronic hepatotoxicity. Moreover, some platforms permit the investigation of drug action in specific genetic backgrounds or diseased hepatocytes, thereby significantly expanding the repertoire of tools to detect drug-induced liver injuries. It is concluded that the development of 3D liver models has hitherto been fruitful and that systems are now at hand whose sensitivity and specificity in detecting hepatotoxicity are superior to those of classical 2D culture systems. For the future, we highlight the need to develop more integrated coculture model systems to emulate immunotoxicities that arise due to complex interactions between hepatocytes and immune cells.

174 citations


Journal ArticleDOI
TL;DR: A series of efficiency indices have been proposed that attempt to define aspects of compound quality in the context of a series of physicochemical parameters, and lipophilic ligand efficiency (LLE or LipE) has been characterized as the most robust metric that has potential for broad-based application.
Abstract: Drug discovery and development is a complex and lengthy enterprise that suffers from high rates of candidate attrition at all stages of the process. The physical, biological, and toxicological properties of a drug candidate are inextricably linked to its structure, and once a molecule has been synthesized, all subsequent studies along the development path are focused only on assessing and understanding its properties in greater detail. Unfortunately, a full prediction of the biological properties of a molecule from an analysis of its 2- or 3-dimensional structure is currently beyond our expertise. This backdrop mandates that considerable care be taken at the design stage if a molecule is to be successful in testing a mechanistic concept underlying a disease process and to progress into late stage clinical trials and, ultimately, marketing approval. While there are multiple potential causes of candidate attrition, an introspective analysis of drug design practices over the past decade has focused attention...

134 citations


Journal ArticleDOI
Eric A.G. Blomme1, Yvonne Will2
TL;DR: An overview of toxicology approaches and models that can be used in pharmaceutical Discovery at the series/lead identification and lead optimization stages to guide and inform chemistry efforts, as well as a personal view on how to best use them to meet nonclinical safety-related attrition objectives consistent with a sustainable pharmaceutical R&D model are provided.
Abstract: Attrition due to nonclinical safety represents a major issue for the productivity of pharmaceutical research and development (R&D) organizations, especially during the compound optimization stages of drug discovery and the early stages of clinical development. Focusing on decreasing nonclinical safety-related attrition is not a new concept, and various approaches have been experimented with over the last two decades. Front-loading testing funnels in Discovery with in vitro toxicity assays designed to rapidly identify unfavorable molecules was the approach adopted by most pharmaceutical R&D organizations a few years ago. However, this approach has also a non-negligible opportunity cost. Hence, significant refinements to the "fail early, fail often" paradigm have been proposed recently to reflect the complexity of accurately categorizing compounds with early data points without taking into account other important contextual aspects, in particular efficacious systemic and tissue exposures. This review provides an overview of toxicology approaches and models that can be used in pharmaceutical Discovery at the series/lead identification and lead optimization stages to guide and inform chemistry efforts, as well as a personal view on how to best use them to meet nonclinical safety-related attrition objectives consistent with a sustainable pharmaceutical R&D model. The scope of this review is limited to small molecules, as large molecules are associated with challenges that are quite different. Finally, a perspective on how several emerging technologies may impact toxicity evaluation is also provided.

128 citations


Journal ArticleDOI
TL;DR: The continuing development and improvement of LC-MS/MS coupled with the stable isotope-dilution method for DNA adduct quantification will further promote research about the clinical implications and diagnostic applications of oxidatively induced DNAAdducts.
Abstract: A variety of endogenous and exogenous agents can induce DNA damage and lead to genomic instability. Reactive oxygen species (ROS), an important class of DNA damaging agents, are constantly generated in cells as a consequence of endogenous metabolism, infection/inflammation, and/or exposure to environmental toxicants. A wide array of DNA lesions can be induced by ROS directly, including single-nucleobase lesions, tandem lesions, and hypochlorous acid (HOCl)/hypobromous acid (HOBr)-derived DNA adducts. ROS can also lead to lipid peroxidation, whose byproducts can also react with DNA to produce exocyclic DNA lesions. A combination of bioanalytical chemistry, synthetic organic chemistry, and molecular biology approaches have provided significant insights into the occurrence, repair, and biological consequences of oxidatively induced DNA lesions. The involvement of these lesions in the etiology of human diseases and aging was also investigated in the past several decades, suggesting that the oxidatively induce...

124 citations


Journal ArticleDOI
TL;DR: In this review, reactive metabolite risk and hazard assessment approaches are discussed, and their pros and cons highlighted and an overview of the key components of these systems is presented.
Abstract: Although idiosyncratic adverse drug reactions are rare, they are still a major concern to patient safety. Reactive metabolites are widely accepted as playing a pivotal role in the pathogenesis of idiosyncratic adverse drug reactions. While there are today well established strategies for the risk assessment of stable metabolites within the pharmaceutical industry, there is still no consensus on reactive metabolite risk assessment strategies. This is due to the complexity of the mechanisms of these toxicities as well as the difficulty in identifying and quantifying short-lived reactive intermediates such as reactive metabolites. In this review, reactive metabolite risk and hazard assessment approaches are discussed, and their pros and cons highlighted. We also discuss the nature of idiosyncratic adverse drug reactions, using acetaminophen and nefazodone to exemplify the complexity of the underlying mechanisms of reactive metabolite mediated hepatotoxicity. One of the key gaps moving forward is our understan...

103 citations


Journal ArticleDOI
TL;DR: A general molecular mechanism involving dehydrogenations and oxidative coupling for the formation of FICZ in which I3A is the important precursor is presented, suggesting that FicZ is likely to be formed systemically.
Abstract: Activation of the aryl hydrocarbon receptor (AhR), a conserved transcription factor best known as a target for highly toxic halogenated substances such as dioxin, under normal xenobiotic-free conditions is of considerable scientific interest. We have demonstrated previously that a photoproduct of tryptophan, 6-formylindolo[3,2-b]carbazole (FICZ), fulfills the criteria for an endogenous ligand for this receptor and proposed that this compound is the enigmatic mediator of the physiological functions of AhR. Here, we describe novel light-independent pathways by which FICZ can be formed. The oxidant H2O2 was shown to convert tryptophan to FICZ on its own in the absence of light. The enzymatic deamination of tryptamine yielded indole-3-acetaldehyde (I3A), which then rearranged to FICZ and its oxidation product, indolo[3,2-b]carbazole-6-carboxylic acid (CICZ). Indole-3-pyruvate (I3P) also produced I3A, FICZ, and CICZ. Malassezia yeast species, which constitute a part of the normal skin microbiota, produce a number of AhR activators from tryptophan. We identified both FICZ and CICZ among those products. Formation of FICZ from tryptophan or I3P produces a complex mixture of indole derivatives, some of which are CYP1A1 inhibitors. These can hinder the cellular clearance of FICZ and thereby increase its power as an AhR agonist. We present a general molecular mechanism involving dehydrogenations and oxidative coupling for the formation of FICZ in which I3A is the important precursor. In conclusion, our results suggest that FICZ is likely to be formed systemically.

94 citations


Journal ArticleDOI
TL;DR: The results imply that RES can protect against DON-induced intestinal damage and that RES may be used as a novel dietary intervention strategy to reduce DON toxicity in animals/humans.
Abstract: Contamination of food/feedstuffs by mycotoxins is a serious problem worldwide, causing severe economic losses and serious health problems in animals/humans. Deoxynivalenol (DON) is a major mycotoxin contaminant and is known to impair intestinal barrier function. Grapes and red wine are rich in polyphenols, such as resveratrol (RES), which has striking antioxidant and anti-inflammatory activities. RES is a food-derived component; therefore, it may be simultaneously present with DON in the gastrointestinal tract. The aim of this study was to explore in vitro protective effects of RES against DON-induced intestinal damage. The results showed that RES could protect DON-induced bacteria translocation because of enhanced of intestinal barrier function by restoring the DON-induced decrease in transepithelial electrical resistance and increase in paracellular permeability. Further mechanistic studies demonstrated that RES protects against DON-induced barrier dysfunction by promoting the assembly of claudin-4 in the tight junction complex. This is probably mediated through modulation of IL-6 and IL-8 secretion via mitogen-activated protein kinase-dependent pathways. Our results imply that RES can protect against DON-induced intestinal damage and that RES may be used as a novel dietary intervention strategy to reduce DON toxicity in animals/humans.

91 citations


Journal ArticleDOI
TL;DR: There is an urgent need for better computational models to allow for the identification of safe drug candidates and to support experimental design, and a large data set comprising 3712 compounds with liver related toxicity findings in humans and animals was collected from various sources.
Abstract: Hepatic toxicity is a key concern for novel pharmaceutical drugs since it is difficult to anticipate in preclinical models, and it can originate from pharmacologically unrelated drug effects, such as pathway interference, metabolism, and drug accumulation. Because liver toxicity still ranks among the top reasons for drug attrition, the reliable prediction of adverse hepatic effects is a substantial challenge in drug discovery and development. To this end, more effort needs to be focused on the development of improved predictive in-vitro and in-silico approaches. Current computational models often lack applicability to novel pharmaceutical candidates, typically due to insufficient coverage of the chemical space of interest, which is either imposed by size or diversity of the training data. Hence, there is an urgent need for better computational models to allow for the identification of safe drug candidates and to support experimental design. In this context, a large data set comprising 3712 compounds with liver related toxicity findings in humans and animals was collected from various sources. The complex pathology was clustered into 21 preclinical and human hepatotoxicity endpoints, which were organized into three levels of detail. Support vector machine models were trained for each endpoint, using optimized descriptor sets from chemometrics software. The optimized global human hepatotoxicity model has high sensitivity (68%) and excellent specificity (95%) in an internal validation set of 221 compounds. Models for preclinical endpoints performed similarly. To allow for reliable prediction of "truly external" novel compounds, all predictions are tagged with confidence parameters. These parameters are derived from a statistical analysis of the predictive probability densities. The whole approach was validated for an external validation set of 269 proprietary compounds. The models are fully integrated into our early safety in-silico workflow.

Journal ArticleDOI
TL;DR: In this article, the state-of-the-art in the monitoring of mycotoxins in human breast milk is reviewed, and the authors highlight that most of the data captured to date have not been verified with the precision now capable utilizing LC-MS/MS and LC-HRMS approaches.
Abstract: Human breast milk is considered as the best and ideal form of nutrition for infants. However, food contaminants such as mycotoxins, which may be transferred from maternal blood to milk, are poorly described. Mycotoxins are a major group of natural toxins frequently detected in foods. Here, we review the current state-of-the-art in the monitoring of mycotoxins in human breast milk, i.e., knowledge on occurrence, metabolism, and analytical assays utilized for their quantification. We highlight that most of the data captured to date have not been verified with the precision now capable utilizing LC-MS/MS and LC-HRMS approaches. One concern is that some studies may overestimate individual measures, and most cannot capture the patterns and levels of mycotoxin mixtures. We propose accurate assessment as a priority, especially for aflatoxins, fumonisins, ochratoxin A, zearalenone, and deoxynivalenol as well as their major metabolites. However, also so-called emerging toxins such as citrinin, the enniatins, beauv...

Journal ArticleDOI
TL;DR: The beneficial effects of dietary phytochemicals on cancer development warrant further investigation to provide additional impetus for clinical translational studies.
Abstract: Oxidative stress occurs when cellular reactive oxygen species levels exceed the self-antioxidant capacity of the body. Oxidative stress induces many pathological changes, including inflammation and cancer. Chronic inflammation is believed to be strongly associated with the major stages of carcinogenesis. The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway plays a crucial role in regulating oxidative stress and inflammation by manipulating key antioxidant and detoxification enzyme genes via the antioxidant response element. Many dietary phytochemicals with cancer chemopreventive properties, such as polyphenols, isothiocyanates, and triterpenoids, exert antioxidant and anti-inflammatory functions by activating the Nrf2 pathway. Furthermore, epigenetic changes, including DNA methylation, histone post-translational modifications, and miRNA-mediated post-transcriptional alterations, also lead to various carcinogenesis processes by suppressing cancer repressor gene transcription. Using epigenetic res...

Journal ArticleDOI
TL;DR: In addition to lowering hepatic gluconeogenesis, metformin also scavenges the highly reactive MG in vivo, thereby reducing potentially detrimental MG protein adducts, with subsequent reductions in diabetic complications.
Abstract: Methylglyoxal (MG) is a highly reactive dicarbonyl compound involved in the formation of advanced glycation endproducts (AGE). Levels of MG are elevated in patients with type-2 diabetes mellitus (T2DM), and AGE have been implicated in the progression of diabetic complications. The antihyperglycemic drug metformin (MF) has been suggested to be a scavenger of MG. The present work examined and characterized unequivocally the resulting scavenged product from the metformin–MG reaction. The primary product was characterized by 1H, 13C, 2D-HSQC, and HMBC NMR and tandem mass spectrometry. X-ray diffraction analysis determined the structure of the metformin and MG-derived imidazolinone compound as (E)-1,1-dimethyl-2-(5-methyl-4-oxo-4,5-dihydro-1H-imidazol-2-yl)guanidine (IMZ). A LC-MS/MS multiple reaction monitoring method was developed to detect and quantify the presence of IMZ in metformin-treated T2DM patients. Urine from >90 MF-treated T2DM patients was analyzed, with increased levels of MF directly correlatin...

Journal ArticleDOI
TL;DR: It is hypothesize that individuals with genetic variants of BChE may be at increased risk of toxicity from nerve agents but not from OP pesticides.
Abstract: Acetylcholinesterase (AChE) is the physiologically important target for organophosphorus toxicants (OP) including nerve agents and pesticides. Butyrylcholinesterase (BChE) in blood serves as a bioscavenger that protects AChE in nerve synapses from inhibition by OP. Mass spectrometry methods can detect exposure to OP by measuring adducts on the active site serine of plasma BChE. Genetic variants of human AChE and BChE do exist, but loss of function mutations have been identified only in the BCHE gene. The most common AChE variant, His353Asn (H322N), also known as the Yt blood group antigen, has normal AChE activity. The most common BChE variant, Ala567Thr (A539T) or the K-variant in honor of Werner Kalow, has 33% reduced plasma BChE activity. The genetic variant most frequently associated with prolonged response to muscle relaxants, Asp98Gly (D70G) or atypical BChE, has reduced activity and reduced enzyme concentration. Early studies in young, healthy males, performed at a time when it was legal to test ne...

Journal ArticleDOI
TL;DR: It is demonstrated that BPA induces the activation of signal transduction pathways, which mediate migration, AP-1/NFκB-DNA binding activity, and an invasion process in MDA-MB-231 breast cancer cells.
Abstract: Bisphenol A (BPA) is an industrial synthetic chemical utilized in the production of numerous products including food and beverage containers. Humans are exposed to BPA during ingestion of contaminated water and food because it can leach from polycarbonate containers, beverage cans, and epoxy resins. BPA has been related with the development of several diseases including breast cancer. However, the signal transduction pathways mediated by BPA and its role as a promoter of migration and invasion in breast cancer cells remain to be investigated. Here, we demonstrate that BPA promotes migration, invasion, and an increase in the number of focal contacts in MDA-MB-231 breast cancer cells. Moreover, MDA-MB-231 cells express GPER, and BPA promotes migration through a GPER-dependent pathway. BPA also induces activation of FAK, Src, and ERK2, whereas migration induced by BPA requires the activity of these kinases. In addition, BPA induces an increase on AP-1- and NFκB-DNA binding activity through an Src- and ERK2-dependent pathway. In conclusion, our findings demonstrate, that BPA induces the activation of signal transduction pathways, which mediate migration, AP-1/NFκB-DNA binding activity, and an invasion process in MDA-MB-231 breast cancer cells.

Journal ArticleDOI
TL;DR: A perspective, as taken from these sectors, of the current status of non-testing approaches, their evolution in light of the advances in high-throughput approaches and constructs such as adverse outcome pathways, and their potential relevance for drug discovery is offered.
Abstract: Exploiting non-testing approaches to predict toxicity early in the drug discovery development cycle is a helpful component in minimizing expensive drug failures due to toxicity being identified in late development or even during clinical trials. Changes in regulations in the industrial chemicals and cosmetics sectors in recent years have prompted a significant number of advances in the development, application, and assessment of non-testing approaches, such as (Q)SARs. Many efforts have also been undertaken to establish guiding principles for performing read-across within category and analogue approaches. This review offers a perspective, as taken from these sectors, of the current status of non-testing approaches, their evolution in light of the advances in high-throughput approaches and constructs such as adverse outcome pathways, and their potential relevance for drug discovery. It also proposes a workflow for how non-testing approaches could be practically integrated within testing and assessment stra...

Journal ArticleDOI
Liang Chi1, Xiaoming Bian1, Bei Gao1, Hongyu Ru1, Pengcheng Tu1, Kun Lu1 
TL;DR: This work demonstrated that arsenic exposure perturbed the trajectory and function of the gut microbiome in a sex-specific manner in both female and male C57/BL6 mice.
Abstract: The gut microbiome is deeply involved in numerous aspects of human health; however, it can be readily perturbed by environmental toxicants, such as arsenic Meanwhile, the interaction among host, gut microbiome, and xenobiotics is a very complex dynamic process Previously, we have demonstrated that gut microbiome phenotypes driven by host genetics and bacterial infection affect the responses to arsenic exposure The role of host sex in shaping the gut microbiome raises the question whether sex plays a role in exposure-induced microbiome responses To examine this, we used 16S rRNA sequencing and metagenomics sequencing to analyze the changes of the gut microbiome and its associated functional metagenome in both female and male C57/BL6 mice Our results clearly demonstrated that arsenic exposure perturbed the trajectory and function of the gut microbiome in a sex-specific manner

Journal ArticleDOI
TL;DR: Results clearly indicate that PTS maintains glucose homeostasis, suggesting the possibility that it is a future candidate for use in diabetes management, and reduces oxidative damage to pancreas.
Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) remains a master regulator of cytoprotective and antioxidant genes. In this study, we investigated the antidiabetic role of pterostilbene (PTS) in streptozotocin (STZ)-induced diabetic model through Nrf2-mediated antioxidant mechanisms. The ability of PTS to activate Nrf2 in MIN6 cells was assessed by dissociation of the Nrf2-Keap1 complex at different time points and by expression of ARE-driven downstream target genes of Nrf2. Immunoblot experiments examining Nrf2 activation and phosphorylation indicated that it conferred cytoprotection against STZ-induced cellular damage. In STZ-induced diabetic mice, PTS administration significantly decreased blood glucose levels through the improvement of insulin secretion. In addition, we also observed insulin-positive cells with recovered islet architecture in the pancreas of STZ-induced diabetic mice after treatment with PTS. The activation of Nrf2 and expression of its downstream target genes were observed upon PTS treatment, thereby reducing oxidative damage to pancreas. Furthermore, PTS treatment significantly reverted the abundance of key glucose metabolism enzymes, such as hexokinase, glucose-6-phosphatase, glucose-6-phosphate dehydrogenase, and fructose-1,6-bisphosphatase, to near-normal levels in liver tissue of STZ-induced diabetic mice. These results clearly indicate that PTS maintains glucose homeostasis, suggesting the possibility that it is a future candidate for use in diabetes management.

Journal ArticleDOI
TL;DR: The data suggest that the tobacco-heating system (THS) 2.2 aerosol is less toxic than combustible cigarette smoke and thus may have the potential to reduce the risk for smoke-related diseases.
Abstract: Cigarette smoke increases the risk for respiratory and other diseases. Although smoking prevalence has declined over the years, millions of adults choose to continue to smoke. Modified risk tobacco products (MRTPs) are potentially valuable tools for adult smokers that are unwilling to quit their habit. Here, we investigated the biological impact of a candidate MRTP, the tobacco-heating system (THS) 2.2, compared to that of the 3R4F reference cigarette in normal primary human bronchial epithelial cells. Chemical characterization of the THS 2.2 aerosol showed reduced levels of harmful constituents compared to those of a combustible cigarette. Multiparametric indicators of cellular toxicity were measured via real-time cellular analysis and high-content screening. The study was complemented by a whole transcriptome analysis, followed by computational approaches to identify and quantify perturbed molecular pathways. Exposure of cells to 3R4F cigarette smoke resulted in a dose-dependent response in most toxicity end points. Moreover, we found a significant level of perturbation in multiple biological pathways, particularly in those related to cellular stress. By contrast, exposure to THS 2.2 resulted in an overall lower biological impact. At 3R4F doses, no toxic effects were observed. A toxic response was observed for THS 2.2 in some functional end points, but the responses occurred at doses between 3 and 15 times higher than those of 3R4F. The level of biological network perturbation was also significantly reduced following THS 2.2 aerosol exposure compared to that of 3R4F cigarette smoke. Taken together, the data suggest that THS 2.2 aerosol is less toxic than combustible cigarette smoke and thus may have the potential to reduce the risk for smoke-related diseases.

Journal ArticleDOI
TL;DR: There seem to be new marine toxins appearing in areas that are heavy producers of seafood, and this is a cause of concern as most of these new toxins are not included in current legislation and monitoring programs.
Abstract: In recent years, our group and several others have been describing the presence of new, not previously reported, toxins of high toxicity in vectors that may reach the human food chain. These include tetrodotoxin in gastropods in the South of Europe, ciguatoxin in fish in the South of Spain, palytoxin in mussels in the Mediterranean Sea, pinnatoxin all over Europe, and okadaic acid in the south of the U.S. There seem to be new marine toxins appearing in areas that are heavy producers of seafood, and this is a cause of concern as most of these new toxins are not included in current legislation and monitoring programs. Along with the new toxins, new chemical analogues are being reported. The same phenomenom is being recorded in freshwater toxins, such as the wide appearance of cylindrospermopsin and the large worldwide increase of microcystin. The problem that this phenomenon, which may be linked to climate warming, poses for toxicologists is very important not only because there is a lack of chronic studies and an incomplete comprehension of the mechanism driving the production of these toxins but also because the lack of a legal framework for them allows many of these toxins to reach the market. In some cases, it is very difficult to control these toxins because there are not enough standards available, they are not always certified, and there is an insufficient understanding of the toxic equivalency factors of the different analogues in each group. All of these factors have been revealed and grouped through the massive increase in the use of LC-MS as a monitoring tool, legally demanded, creating more toxicological problems.

Journal ArticleDOI
TL;DR: This analysis shows that the combination of in chemico and in vitro test methods is suitable to identify pre-haptens and the majority of pro- haptens, exhibiting a similar sensitivity as for directly acting haptens.
Abstract: Because of ethical and regulatory reasons, several nonanimal test methods to assess the skin sensitization potential of chemicals have been developed and validated. In contrast to in vivo methods, they lack or provide limited metabolic capacity. For this reason, identification of pro-haptens but also pre-haptens, which require molecular transformations to gain peptide reactivity, is a challenge for these methods. In this study, 27 pre- and pro-haptens were tested using nonanimal test methods. Of these, 18 provided true positive results in the direct peptide reactivity assay (DPRA; sensitivity of 67%), although lacking structural alerts for direct peptide reactivity. The reaction mechanisms leading to peptide depletion in the DPRA were therefore elucidated using mass spectrometry. Hapten-peptide adducts were identified for 13 of the 18 chemicals indicating that these pre-haptens were activated and that peptide binding occurred. Positive results for five of the 18 chemicals can be explained by dipeptide formations or the oxidation of the sulfhydryl group of the peptide. Nine of the 27 chemicals were tested negative in the DPRA. Of these, four yielded true positive results in the keratinocyte and dendritic cell based assays. Likewise, 16 of the 18 chemicals tested positive in the DPRA were also positive in either one or both of the cell-based assays. A combination of DPRA, KeratinoSens, and h-CLAT used in a 2 out of 3 weight of evidence (WoE) approach identified 22 of the 27 pre- and pro-haptens correctly (sensitivity of 81%), exhibiting a similar sensitivity as for directly acting haptens. This analysis shows that the combination of in chemico and in vitro test methods is suitable to identify pre-haptens and the majority of pro-haptens.

Journal ArticleDOI
Yan Lou1, Qian Wang1, Jinqi Zheng, Haihong Hu1, Lin Liu1, Dongsheng Hong1, Su Zeng1 
TL;DR: It appears from this scientific evidence that additional study is needed to determine the effect of skin-mediated metabolism in the possible mechanism of HFS induced by capecitabine.
Abstract: Capecitabine, an oral prodrug of 5-fluorouracil, inhibits DNA synthesis and has received FDA approval for treatment of metastatic colorectal and breast cancers. Hand–foot syndrome (HFS) is a serious dose-limiting toxicity and the most frequently reported side effect of capecitabine. Because of the lack of knowledge about the causative mechanism of HFS, scarce information is available for effective treatment or prevention. Data are based on published literatures and reports available from the HFS development program database. The purpose of this Review is to provide information regarding definition, clinical manifestation, and the possible mechanisms of HFS induced by capecitabine. Ethnic variations in the clinical presentation of HFS warrant further attention. Several physiological and pharmacological mechanisms have been investigated, such as cyclooxygenase (COX) inflammatory-type reaction, accumulation of capecitabine metabolites, and enzymes and transporters involved in the metabolism and absorption. A...

Journal ArticleDOI
TL;DR: The aim of this study was to develop novel structural alerts for nuclear receptor (NR) ligands that are associated with inducing hepatic steatosis and to show the vast number of existing data that are available.
Abstract: In silico models are essential for the development of integrated alternative methods to identify organ level toxicity and lead toward the replacement of animal testing. These models include (quantitative) structure–activity relationships ((Q)SARs) and, importantly, the identification of structural alerts associated with defined toxicological end points. Structural alerts are able both to predict toxicity directly and assist in the formation of categories to facilitate read-across. They are particularly important to decipher the myriad mechanisms of action that result in organ level toxicity. The aim of this study was to develop novel structural alerts for nuclear receptor (NR) ligands that are associated with inducing hepatic steatosis and to show the vast number of existing data that are available. Current knowledge on NR agonists was extended with data from the ChEMBL database (12,713 chemicals in total) of bioactive molecules and from studying NR ligand-binding interactions within the protein database ...

Journal ArticleDOI
TL;DR: The unique haptenic structures on albumin in patients formed by amoxicillin and clavulanic acid have been characterized and shown to function as chemically distinct antigens which can stimulate separate, specific T-cell clones.
Abstract: Amoxicillin-clavulanate (AC) is one of the most common causes of drug induced liver injury (DILI). The association between AC-DILI and HLA alleles and the detection of drug-specific T cells in patients with AC-DILI indicate that the adaptive immune system is involved in the disease pathogenesis. In this study, mass spectrometric methods were employed to characterize the antigen formed by AC in exposed patients and the antigenic determinants that stimulate T cells. Amoxicillin formed penicilloyl adducts with lysine residues on human serum albumin (HSA) in vitro, with K190 and K199 being the most reactive sites. Amoxicillin-modified K190 and K199 have also been detected in all patients, and more extensive modification was observed in patients exposed to higher doses of amoxicillin. In contrast, the binding of clavulanic acid to HSA was more complicated. Multiple adducts were identified at high concentrations in vitro, including those formed by direct binding of clavulanic acid to lysine residues, novel pyra...

Journal ArticleDOI
TL;DR: Currently available proteomic technologies including MS/MS analysis to identify antigens, precise location of modifications, and the immunological consequence of hapten-protein complex are illustrated to increase ability to predict idiosyncratic toxicity for a given compound.
Abstract: The covalent binding of drugs (metabolites) to proteins to form drug–protein adducts can have an adverse effect on the body. These adducts are thought to be responsible for idiosyncratic drug reactions including severe drug hypersensitivity reactions. Major advances in proteomics technology have allowed for the identification and quantification of target proteins for certain drugs. Human serum albumin (HSA) and Hb have been identified as accessible targets and potential biomarkers for drug–protein adducts formation, for numerous drugs (metabolites) including β-lactam antibiotics, reactive drug metabolites such as quinone imines (acetaminophen) and acyl glucuronides (diclofenac), and covalent inhibitors (neratinib). For example, MS/MS analysis of plasma samples from patients taking flucloxacillin revealed that flucloxacillin and its 5-hydroxymethyl metabolite formed covalent adducts with lysine residues on albumin via opening of the β-lactam ring. Other proteins such as P450 and keratin are also potential ...

Journal ArticleDOI
TL;DR: The impact of 3R4F CS was greater than THS2.2 aerosol in terms of cytotoxicity, morphological tissue alterations, and secretion of inflammatory mediators, and it was observed that the exposed cultures recovered more completely compared with those exposed to 3R 4F CS.
Abstract: Cigarette smoke (CS) has been reported to increase predisposition to oral cancer and is also recognized as a risk factor for many conditions including periodontal diseases, gingivitis, and other benign mucosal disorders. Smoking cessation remains the most effective approach for minimizing the risk of smoking-related diseases. However, reduction of harmful constituents by heating rather than combusting tobacco, without modifying the amount of nicotine, is a promising new paradigm in harm reduction. In this study, we compared effects of exposure to aerosol derived from a candidate modified risk tobacco product, the tobacco heating system (THS) 2.2, with those of CS generated from the 3R4F reference cigarette. Human organotypic oral epithelial tissue cultures (EpiOral, MatTek Corporation) were exposed for 28 min to 3R4F CS or THS2.2 aerosol, both diluted with air to comparable nicotine concentrations (0.32 or 0.51 mg nicotine/L aerosol/CS for 3R4F and 0.31 or 0.46 mg/L for THS2.2). We also tested one higher ...

Journal ArticleDOI
TL;DR: In this review, drug metabolism and disposition mediated by humanized livers in chimeric mice are summarized in terms of biliary/urinary excretions of phthalate and bisphenol A and plasma clearances of the human cocktail probe drugs caffeine, warfarin, omeprazole, metoprolol, and midazolam.
Abstract: Species differences exist in terms of drug oxidation activities, which are mediated mainly by cytochrome P450 (P450) enzymes. To overcome the problem of species extrapolation, transchromosomic mice containing a human P450 3A cluster or chimeric mice transplanted with human hepatocytes have been introduced into the human toxicology research area. In this review, drug metabolism and disposition mediated by humanized livers in chimeric mice are summarized in terms of biliary/urinary excretions of phthalate and bisphenol A and plasma clearances of the human cocktail probe drugs caffeine, warfarin, omeprazole, metoprolol, and midazolam. Simulation of human plasma concentrations of the teratogen thalidomide and its human metabolites is possible with a simplified physiologically based pharmacokinetic model based on data obtained in chimeric mice, in accordance with reported clinical thalidomide concentrations. In addition, in vivo nonspecific hepatic protein binding parameters of metabolically activated 14C-drug...

Journal ArticleDOI
TL;DR: Analysis of proteolytic digests of DPC-containing DNA from NOR-treated cells revealed a concentration-dependent formation of N-[2-[cysteinyl]ethyl]-N-[2-(guan-7-yl)ethyl]amine (Cys-NOR-N7G) conjugates, confirming that it cross-links cysteine thiols of proteins to the N7 position of guanines in DNA.
Abstract: N,N-Bis-(2-chloroethyl)-phosphorodiamidic acid (phosphoramide mustard, PM) and N,N-bis-(2-chloroethyl)-amine (nornitrogen mustard, NOR) are the two biologically active metabolites of cyclophosphamide, a DNA alkylating drug commonly used to treat lymphomas, breast cancer, certain brain cancers, and autoimmune diseases. PM and NOR are reactive bis-electrophiles capable of cross-linking cellular biomolecules to form covalent DNA–DNA and DNA–protein cross-links (DPCs). In the present work, a mass spectrometry-based proteomics approach was employed to characterize PM- and NOR-mediated DNA–protein cross-linking in human cells. Following treatment of human fibrosarcoma cells (HT1080) with cytotoxic concentrations of PM, over 130 proteins were found to be covalently trapped to DNA, including those involved in transcriptional regulation, RNA splicing/processing, chromatin organization, and protein transport. HPLC-ESI+-MS/MS analysis of proteolytic digests of DPC-containing DNA from NOR-treated cells revealed a con...

Journal ArticleDOI
TL;DR: The results suggest that FN1 is a novel anticancer agent for prostate cancer in the TRAMP-C1 cell line, which can increase the level of Nrf2 and downstream genes via activating the Nrf 2-ARE pathway and inhibit the colony formation potentially through the decreased expression of keap1 coupled with CpG demethylation of the NRF2 promoter.
Abstract: It has previously been shown that curcumin can effectively inhibit prostate cancer proliferation and progression in TRAMP mice, potentially acting through the hypomethylation of the Nrf2 gene promoter and hence activation of the Nrf2 pathway to enhance cell antioxidative defense. FN1 is a synthetic curcumin analogue that shows stronger anticancer activity than curcumin in other reports. We aimed to explore the epigenetic modification of FN1 that restores Nrf2 expression in TRAMP-C1 cells. Stably transfected HepG2-C8 cells were used to investigate the effect of FN1 on the Nrf2- antioxidant response element (ARE) pathway. Real-time quantitative PCR and Western blotting were applied to study the influence of FN1 on endogenous Nrf2 and its downstream genes. Bisulfite genomic sequencing (BGS) and methylated DNA immunoprecipitation (MeDIP) were then performed to examine the methylation profile of the Nrf2 promoter. An anchorage-independent colony-formation analysis was conducted to examine the tumor inhibition activity of FN1. Epigenetic modification enzymes, including DNMTs and HDACs, were investigated by Western blotting. The luciferase reporter assay indicated that FN1 was more potent than curcumin in activating the Nrf2-ARE pathway. FN1 increased the expression of Nrf2 and its downstream detoxifying enzymes. FN1 significantly inhibited the colony formation of TRAMP-C1 cells. BGS and MeDIP assays revealed that FN1 treatment (250 nM for 3 days) reduced the percentage of CpG methylation of the Nrf2 promoter. FN1 also downregulated epigenetic modification enzymes. In conclusion, our results suggest that FN1 is a novel anticancer agent for prostate cancer. In the TRAMP-C1 cell line, FN1 can increase the level of Nrf2 and downstream genes via activating the Nrf2-ARE pathway and inhibit the colony formation potentially through the decreased expression of keap1 coupled with CpG demethylation of the Nrf2 promoter. This CpG demethylation effect may come from decreased epigenetic modification enzymes, such as DNMT1, DNMT3a, DNMT3b, and HDAC4.